Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) chỉ cần thay đại X và Y làm sao cho thõa rồi thay là được. Như trường hợp này ta có thể thay X=2 và
Y=\(\sqrt{2}\)
thay vào ta được A= - 8
câu b) Vì A(x) chia hết cho B(x) và C(x) nên A(x) chia hết cho B(x).C(x)=(x-3)(2x+1)=\(2x^2-5x-3\)
a=-5 và b=-3
\(\Rightarrow\)thay vào ta tính dược 3a-2b = 3.(-5)-2.(-3)= -15+6 = -9
Ta có: \(A=x^6-2x^4+x^3+x^2-x\)
\(\Rightarrow A=\left(x^6-2x^4+x^2\right)+\left(x^3-x\right)\)
\(\Rightarrow A=\left[\left(x^3\right)^2-2x^3x+x^2\right]+\left(x^3-x\right)\)
\(\Rightarrow A=\left(x^3-x\right)^2+\left(x^3-x\right)\)\(\left(1\right)\)
Thay \(x^3-x=8\)vào \(\left(1\right)\)ta có:
\(\Rightarrow A=8^2+8=72\)
Vậy \(A=72\)
A=x^6-2x^4+x^2+(x^3-x)
=x^6-x^4-x^4+x^2+(x^3-x)
=x^3(x^3-x)-x(x^3-x)+(x^3-x)
=(x^3-x)(x^3-x)+(x^3-x)=8.8+8=8*9=72
Ta có
\(x^2+x^2y^2-2y=0\)
\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\left(\left(y-1\right)^2\ge0\right)\)
\(\Leftrightarrow-1\le x\le1\)(1)
Ta lại có
\(x^3+2y^2-4y+3=0\)
\(\Leftrightarrow x^3=-2y^2+4y-3\)
\(=\left(-2y^2+4y-2\right)-1\)
\(=-1-2\left(y-1\right)^2\le-1\)
\(\Rightarrow x\le-1\)(2)
Từ (1) và (2) \(\Rightarrow x=-1\Rightarrow x^2=1\)
\(\Rightarrow y^2-2y+1=0\)
\(\Rightarrow y=1\Rightarrow y^2=1\)
\(\Rightarrow Q=x^2+y^2=1+1=2\)
Ta có: x2 + y2 = 52 <=> (x + y)2 - 2xy = 52
<=> 102 - 2xy = 52 <=> 2xy = 48 <=> xy = 24
a) M = x3 + y3 = (x + y)3 - 3xy(x + y) = 103 - 3.10.24 = 280
b) N = x4 - y4 = (x - y)(x + y)(x2 + y2) = (x - y).10.[(x + y)2 - 2xy] = (x - y). 10(102 - 48) = 520(x - y)
Lại có: (x - y)2 = (x + y)2 - 4xy = 102 - 4.24 = 4 => x - y = 2
=> N = 520.2 = 1040
c) \(E=\frac{2}{x^2}+\frac{2}{y^2}=2\cdot\frac{x^2+y^2}{x^2y^2}=2\cdot\frac{\left(x+y\right)^2-2xy}{x^2y^2}=2\cdot\frac{10^2-48}{24^2}=\frac{13}{72}\)