Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}=\frac{2x^2+12xy}{x^2+2xy+3y^2}\left(x^2+y^2=1\right)\)
- Xét \(y=0\Rightarrow x^2=1\Rightarrow x=\pm1\Rightarrow P=2\)
- Xét \(y\ne0\) chia cả tử và mẫu của P cho \(y^2\) có:
\(P=\frac{2\left(\frac{x}{y}\right)^2+12\frac{x}{y}}{\left(\frac{x}{y}\right)^2+2\frac{x}{y}+3}\). Đặt \(t=\frac{x}{y}\Rightarrow P=\frac{2t^2+12t}{t^2+2t+3}\)
\(\Rightarrow\left(2-P\right)t^2+2\left(6-P\right)t-3P=0\)
Để pt trên có nghiệm thì:
\(\Delta'=\left(6-P\right)^2+3P\left(2-P\right)\ge0\)
\(\Leftrightarrow-2P^2-6P+36\ge0\Leftrightarrow-2\left(x-3\right)\left(x+6\right)\ge0\)
\(\Rightarrow-6\le P\le3\) (khuyến mãi luôn tìm Min, còn đề ko nhắc nên dấu "='' của Min tự tìm :v)
Đẳng thức xảy ra khi \(\left(x;y\right)=\left(\pm\frac{3}{\sqrt{10}};\pm\frac{1}{\sqrt{10}}\right)\) (của max nhé, min tự tìm)
Cả tử và mẫu đồng bậc:)) Em thử nha, ko chắc..
Với y = 0 thì x khác 0 và \(P=\frac{8x^2}{x^2}=8\)
Với y khác 0, chia cả tử và mẫu của P cho y2. Ta có:
\(P=\frac{8\left(\frac{x}{y}\right)^2+6.\frac{x}{y}}{\left(\frac{x}{y}\right)^2+1}\). Đặt \(\frac{x}{y}=t\).
Thế thì: \(P=\frac{8t^2+6t}{t^2+1}\)
Bí.
biểu thức đã cho (=) (8-P)x2 + 6yx -Py2=0
tìm denta ra thì đc như sau: y2(-P2+8P+9) >=0 =) -P2+8P+9 >=0
phần còn lại bấm máy tính ra kết quả là -1=<P=<9
Min=-1 và Max=9
Lời giải:
Nếu $y=0$ thì $x^2=1$. Khi đó $P=2$
Nếu $y\neq 0$. Đặt $\frac{x}{y}=t$ thì:
$P=\frac{2(x^2+6xy)}{x^2+2xy+3y^2}=\frac{2(t^2+6t)}{t^2+2t+3}$
$P(t^2+2t+3)=2t^2+12t$
$t^2(P-2)+2(P-6)t+3P=0$
$\Delta'=(P-6)^2-3P(P-2)\geq 0$
$\Leftrightarrow (P-3)(P+6)\leq 0$
$\Leftrightarrow -6\leq P\leq 3$ nên $P_{\max}=3$
Vậy $P_{\max}=3$
Giá trị này đạt tại $(x,y)=(\frac{3}{\sqrt{10}}; \frac{1}{\sqrt{10}})$ hoặc $(\frac{-3}{\sqrt{10}}; \frac{-1}{\sqrt{10}})$
(2) có nghiệm khi Delta' lớn hơn hoặc bằng 0
Hơn nữa, công thức Delta' của em bị nhầm.
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)