\(x^2+y^2=15\) và x.y = 6. Tính \(x^4+y^4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(xy=6\) \(\Leftrightarrow x^2y^2=36\)

Ta có :\(x^2+y^2=15\Leftrightarrow\left(x^2+y^2\right)^2=225\)

\(\Leftrightarrow x^4+2x^2y^2+y^4=225\)

\(\Leftrightarrow x^4+y^4=225-2.36=153\)

3 tháng 7 2018

\(C=x^2-y^2\)

Tương tự câu \(A=x^2+y^2\)

\(D=x^4+y^4\)

Thay x + y = 17; x.y = 60 vào \(\left(x+y\right)^2=x^2+2xy+y^2\):

172 = x2 + 2.60 + y2

289 = x2 + 120 + y2

\(\Leftrightarrow x^2+y^2=169\)

Lại có:

\(\left(x^2+y^2\right)^2=x^4+y^4+2x^2y^2\)

\(\left(x^2+y^2\right)^2=x^4+y^4+\left(2xy\right)^2\)

Thay \(x^2+y^2=169;x.y=60\)vào biểu thức trên:

169= x+ y+ 2 . 602

\(\Leftrightarrow x^4+y^4=28561-7200\)

\(\Leftrightarrow x^4+y^4=21361\)

3 tháng 7 2018

+)Ta có: x2+y2=169 (câu a) 

<=> (x+y)2-2xy=169

<=>(x+y)2=169+2xy=169+2.60=289

<=>x+y=17

=>\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=7.17=119\)

+) x2+y2=169 

<=>(x2+y2)2=1692

<=>x4+2x2y2+y4=28561

<=>x4+y4=28561-2(xy)2=28561-2.602=28561-7200=21361

30 tháng 9 2017

Không chắc lắm:

Phép nhân và phép chia các đa thức

30 tháng 9 2017

Ta có : x + y = 3

=> ( x + y )2 = 9

=> x2 + 2xy + y2 = 9

=> x2 + y2 = 9 - 2xy

=> x2 + y2 = 9 - 2 . 4

=> x2 + y2 = 1

Khi đó M = 1 - 8 = -7

Lại có : x2 + y2 = 1

=> ( x2 + y2 )2 = 1

=> x4 + 2x2y2 + y4 = 1

=> x4 + 2 . ( xy )2 + y4 = 1

=> x4 + 2 . 42 + y4 = 1

=> x4 + 32 + y4 = 1

=> x4 + y4 = -31

Vậy M = -7 và N = -31

7 tháng 10 2020

\(M=4x^2+9y^2-12xy\)

\(M=\left(4x^2+12xy+9y^2\right)-24xy\)

\(M=\left(2x+3y\right)^2-24xy\)

\(M=2^2-288=-284\)

7 tháng 10 2020

Ta có: \(x-y=7\Rightarrow x=y+7\)

Thay vào: \(y\left(y+7\right)=60\)

\(\Leftrightarrow y^2+7y-60=0\)

\(\Leftrightarrow\left(y-5\right)\left(y+12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-12\left(ktm\right)\end{cases}}\Rightarrow y=5\Rightarrow x=12\)

Từ đó:

\(N=5^4+12^4=625+20736=21361\)

15 tháng 7 2017

a/ \(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)

\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)

15 tháng 7 2017

b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

11 tháng 7 2019

\(\left(x+y\right)^2-2xy=x^2+y^2=4^2-2.1=14\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=14^2-2=196-2=194\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=4\left(14-1\right)=52\)

\(\left(x^4+y^4\right)\left(x+y\right)=194.4=776\Leftrightarrow x^5+y^5+x^4y+y^4x=\left(x^5+y^5\right)+xy\left(x^3+y^3\right)=\left(x^5+y^5\right)+1.52=\left(x^5+y^5\right)+52=776\Rightarrow x^5+y^5=724\)

11 tháng 7 2019

\(\left\{{}\begin{matrix}x+y=4\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+y^2=16\\4xy=4\end{matrix}\right.\Rightarrow x^2+2xy-4xy+y^2=\left(x-y\right)^2=12mà:x>y\Leftrightarrow x-y>0\Rightarrow x-y=\sqrt{12}=2\sqrt{3};x+y=2.2\Rightarrow\left\{{}\begin{matrix}x=\sqrt{3}+2\\y=2-\sqrt{3}\end{matrix}\right.\)

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=4.2\sqrt{3}=8\sqrt{3}\)

\(\left(x^2+y^2\right)\left(x^2-y^2\right)=8\sqrt{3}.14=112\sqrt{3}\Rightarrow x^4-y^4=112\sqrt{3}\)

\(\left(x^3-y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right);x^6-y^6=\left(x^3+y^3\right)\left(x^3-y^3\right)tựlm\)