Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, rút gọn B=x^2/(y-1)+y^2/(x-1)
AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y
=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8
minB=8
Câu 1:
Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)
\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)
\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)
Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)
\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)
Lại áp dụng BĐT AM-GM ta có:
\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)
\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Đẳng thức xảy ra khi \(x=y=1\)
Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)
Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)
Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)
Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)
Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))
\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)
\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2
Ta có bất đẳng thức: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\)
Dấu \(=\)xảy ra khi \(a=b\).
Áp dụng ta được:
\(A=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}=\frac{1}{\left(x+1\right)^2}+\frac{1}{\frac{\left(y+2\right)^2}{2^2}}+\frac{8}{\left(z+3\right)^2}\)
\(\ge\frac{8}{\left(x+1+\frac{y+2}{2}\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}=\frac{256}{\left(2x+y+2z+10\right)^2}\)
Ta có: \(2x+4y+2z\le x^2+1+y^2+4+z^2+1=x^2+y^2+z^2+6\le3y+6\)
\(\Rightarrow2x+y+2z\le6\)
Suy ra \(A\ge\frac{256}{\left(6+10\right)^2}=1\)
Dấu \(=\)xảy ra khi \(x=z=1,y=2\).
\(Q\ge2\left(x+y+z\right)+3.\frac{9}{x+y+z}=2\left(x+y+z\right)+\frac{27}{x+y+z}.\)
Đặt X+Y+Z=t (\(t\le1\))
\(Q\ge2t+\frac{27}{t}=\left(2t+\frac{2}{t}\right)+\frac{25}{t}\ge2\sqrt{2t.\frac{2}{t}}+\frac{25}{1}=4+25=29\\ \)
Dấu = xảy ra khi x=y=z=1/3
Theo bđt cô si ta có : \(x+y+z\ge3\sqrt[3]{xyz}\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
=> \(Q\ge6\sqrt[3]{xyz}+9\sqrt[3]{\frac{1}{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}\cdot9\sqrt[3]{\frac{1}{xyz}}}=6\sqrt{6}\)
Dấu = xảy ra khi : \(6\sqrt[3]{xyz}=9\sqrt[3]{\frac{1}{xyz}}\) Giải ra ta đc : \(xyz=\frac{3}{2}\sqrt{\frac{3}{2}}\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)
\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1
Bài làm :
Ta có :
\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT cosi cho các số không âm ; ta được :
\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)
\(\Rightarrow x+y\ge2\)
Ta có :
\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi x=y=1
Vậy MinP = 2 <=> x=y=1
Chú ý rằng từ giả thiết \(\left(x+y\right)^2=1+2xy\).Đặt \(t=x+y\Rightarrow t^2=\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\)
\(\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)
\(2B=2\left(3-x\right)\left(3-y\right)=\left(2xy+1\right)-6\left(x+y\right)+17\)
\(=\left(x+y\right)^2-6\left(x+y\right)+17=t^2-6t+17\)
\(=t^2-6t+6\sqrt{2}-2+19-6\sqrt{2}\)
\(=\left(\sqrt{2}-t\right)\left(6-t-\sqrt{2}\right)+19-6\sqrt{2}\ge19-6\sqrt{2}\)
Suy ra \(B\ge\frac{19-6\sqrt{2}}{2}\)
Dấu đẳng thức tự xét.
P/s: Số xấu quá nên khi tính toán có thể có sai só, về cơ bản hướng làm là vậy đấy!