Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)
\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)
Cho \(x+y=1\)
Ta có :
\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2+y^2-xy\right)-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2.1.\left[\left(x+y\right)^2-3xy\right]-3\left[1-2xy\right]\)
\(=2\left[1-3xy\right]-3-\left(1-2xy\right)\)
\(=2-6xy-3+6xy\)
\(=1\)
Theo cosi: x^2 + y^2 >= 2xy
Ta lại có: x^2 + y^2 = (x + y)^2 - 2xy = 1 - 2xy
Suy ra: 1 - 2xy >= 2xy <=> 1 >= 4xy
===> xy <= 1/4
x^2 + y^2 >= 2xy = 2x1/4 = 1/2
Vậy: x^2 + y^2 >= 1/2 (đpcm)
Cô - si xét với trường hợp x,y dương thôi =), còn trường hợp trái dấu nữa
2.Câu hỏi của Lãnh Hàn Thần - Toán lớp 8 - Học toán với OnlineMath
Ta phải chứng minh:
2(x + 1)(y + 1) = (x + y)(x + y + 2)
<=> 2xy + 2x + 2y + 2 = x2 + y2 + 2xy + 2x + 2y
<=> x2 + y2 = 2 (luôn đúng)
Vậy nếu x2 + y2 = 2 thì 2(x+1)(y+1) = (x+y)(x+y+2)(đpcm)