\(x^2+xy+y^2=3\)tìm giá trị lớn nhất và nhỏ nhất của biểu thức P=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020



bđt1

bạn sửa lại là 9-2t^2 nhé , mình đánh nhầm ^^

26 tháng 8 2020

chuẩn nhé !

bđt 123

10 tháng 1 2018

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^

6 tháng 11 2018

ĐKXĐ \(x,y\ge0\)

Ta có \(x^3+y^3+xy-x^2-y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow x+y-1=0\)

\(\Leftrightarrow x+y=1\)

Mà x,y\(\ge0\)

\(\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}0\le\sqrt{x}\le1\\0\le\sqrt{y}\le1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}1\le1+\sqrt{x}\le2\\\frac{1}{2}\ge\frac{1}{2+\sqrt{y}}\ge\frac{1}{3}\end{cases}}\)

\(\Rightarrow1\ge P\ge\frac{1}{3}\)

Nhận thấy p\(=\frac{1}{3}\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=1\end{cases}}\)(thỏa mãn)

Nhận thấy P\(=1\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge0\\y\le1\end{cases}}\\\hept{\begin{cases}x\le1\\y\ge0\end{cases}}\end{cases}}\)