K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Áp dụng bđt bunhiacopxki ta có (x-y)^2 = [1.x+(-1/2).2y)]^2 <= [1^2+(-1/2)^2].[x^2+(2y)^2] = 5/4 .(x^2+4y^2) = 5/4

=> |x-y| <= \(\frac{\sqrt{5}}{2}\)=> ĐPCM

Dấu "=" <=> 1/x = (-1/2)/y và x^2+4y^2 = 1 <=> x=\(\frac{2}{\sqrt{5}}\); y=\(\frac{-1}{2\sqrt{5}}\)

3 tháng 1 2020

Cảm thấy đề có gì đó sai sai ở cả tử và mẫu, bạn check lại thử.

Bài 1: 

\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

10 tháng 8 2017

hi kết bạn nha

28 tháng 1 2020

\(RHS=\Sigma\frac{1}{\left(x+1\right)^2+y^2+1}=\Sigma\frac{1}{x^2+y^2+2x+2}\le\Sigma\frac{1}{2xy+2x+2}\)

\(=\frac{1}{2}\left(\frac{1}{xy+x+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mình nghe nói \(\frac{1}{xy+x+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=1\) với \(xyz=1\) đó bạn

Chớ mình gà mình không biết chứng minh đâu,còn cái đoạn đánh giá dưới mẫu đầu tiên đó hình như là BĐT Côsi đó bạn.

hình như dấu "=" xảy ra tại x=y=z=1

21 tháng 8 2019

Trả lời

Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1

Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

ĐPCM

21 tháng 8 2019

 Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)

\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)

Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)

                                        \(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)

Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)

\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)

( mình đang vội nên làm hơi tắt mong bạn thông cảm )

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

a)

Với \(x>1\Rightarrow x-1>0\). Áp dụng BĐT AM-GM:

\(x=(x-1)+1\geq 2\sqrt{x-1}\)

\(\Rightarrow \frac{\sqrt{x-1}}{x}\leq \frac{\sqrt{x-1}}{2\sqrt{x-1}}=\frac{1}{2}\) (đpcm)

Dấu bằng xảy ra ki \(x-1=1\Leftrightarrow x=2\)

b) Trước tiên, ta có bđt phụ sau:

\(x^3+y^3\geq xy(x+y)\)

\(\Leftrightarrow (x-y)^2(x+y)\geq 0\) (luôn đúng với mọi \(x,y>1\) )

Do đó, \(\frac{x^3+y^3-(x^2+y^2)}{(x-1)(y-1)}\geq \frac{xy(x+y)-x^2-y^2}{(x-1)(y-1)}\geq 8\)

\(\Leftrightarrow xy(x+y)-(x^2+y^2)\geq 8(x-1)(y-1)\)

\(\Leftrightarrow x^2(y-1)+y^2(x-1)-8(x-1)(y-1)\geq 0\)

\(\Leftrightarrow (y-1)[x^2-4(x-1)]+(x-1)[y^2-4(y-1)]\geq 0\)

\(\Leftrightarrow (y-1)(x-2)^2+(x-1)(y-2)^2\geq 0\)

(luôn đúng với mọi \(x,y>1\) )

Do đó ta có đpcm

Dấu bằng xảy ra khi \(x=y=2\)

24 tháng 3 2020

Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)

Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);

\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)

\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)

\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)

Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)

Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);

\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);

\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)

\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 3 2020

M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?

Với cả từ dòng này xuống dòng này nữa.

Violympic toán 8

Sao mà tin đc dấu " = " xảy ra khi nào vậy?

Violympic toán 8

11 tháng 8 2016

Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) 

Đpcm

 

11 tháng 8 2016

Trần Việt Linh vào giúp bạn này đi