K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

b, x+y2+z2 +2x-4y-6z+14=0

<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0

<=> (x+1)2+(y-2)2+(z-3)2=0

=>(x+1)2=(y-2)2=(z-3)2=0

=>x+1=y-2=z-3=0

=> x=-1; y=2; z=3

c, 2x2+y2-6x-4y+2xy+5=0

<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0

<=> (x+y-2)2+(x-1)2=0

=> (x+y-2)2=(x-1)2=0

=>x+y-2=x-1=0

=>x=1; y=1

19 tháng 12 2020

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

19 tháng 12 2020

Cảm ơn, cậu giỏi quá!!! Thông cảm cho đứa ngu toánbucminh