\(x>2021\). Tính giá trị nhỏ nhất của \(Q=\dfrac{x^2+y^2}{xy}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^

6 tháng 4 2017

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{9}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{18}{\left(x+y\right)^2}=22\)

22 tháng 4 2019

easy.

x^2+y^2>= (x+y)^2/2 <=> x^2+y^2>=18

(x+y)^2>=4xy <=> xy<=9 

=> 33/xy>=33/9 

CỘNG THEO VẾ suy ra P>= 65/3 . Dấu bằng khi X=Y=3

23 tháng 4 2019

\(P=x^2+y^2+\frac{33}{xy}=\left(x+y\right)^2-2xy+\frac{33}{xy}\) 

\(\ge36-\frac{\left(x+y\right)^2}{2}+\frac{33}{\frac{\left(x+y\right)^2}{4}}=36-\frac{36}{2}+\frac{33}{9}=\frac{65}{3}\)

Vậy min P = 65/3 khi x = y  =3

13 tháng 3 2017

cac ban tra loi di

15 tháng 4 2018

a)x2+y2=2 =>(x+y)2-2xy=2<=>-2xy=2-(x+y)2 <=> xy=\(-\dfrac{2-\left(x+y\right)2}{2}\)

\(-\dfrac{2-\left(x+y\right)2}{2}< 1\)

=>xy <1

AH
Akai Haruma
Giáo viên
26 tháng 1 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\geq \frac{(x+y+z)^2}{x+y+y+z+z+x}\)

\(\Leftrightarrow A\geq \frac{x+y+z}{2}\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} x+y\geq 2\sqrt{xy}\\ y+z\geq 2\sqrt{yz}\\ z+x\geq 2\sqrt{zx}\end{matrix}\right.\)

\(\Rightarrow 2(x+y+z)\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})=2\)

\(\Rightarrow x+y+z\geq 1\)

Do đó: \(A\geq \frac{x+y+z}{2}\geq \frac{1}{2}\)

Vậy \(A_{\min}=\frac{1}{2}\)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

11 tháng 10 2021

\(A=x^2+y^2+xy=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}=1-\frac{1}{4}=\frac{3}{4}\)

5 tháng 6 2017

Bạn bình phương lên là tính đc GTLN đó

5 tháng 6 2017

cảm ơn bạn