Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu x ≥ 0, y ≥ 0, z ≥ 0 thì:
x + y + z ≥ 0
x - y 2 + y - z 2 + z - x 2 ≥ 0
Suy ra:
x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z
Hay: x 3 + y 3 + z 3 3 ≥ x y z
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu a ≥ 0, b ≥ 0, c ≥ 0 thì :
Ta có: \(x^3-y^3=3x-3y\Leftrightarrow x^2+xy+y^2=3\) (Do \(x\neq y\)).
Tương tự: \(y^2+yz+z^2=3;z^2+zx+x^2=3\).
Cộng vế với vế ta có: \(2\left(x^2+y^2+z^2\right)+xy+yz+zx=9\)
\(\Leftrightarrow\dfrac{3\left(x^2+y^2+z^2\right)}{2}+\dfrac{\left(x+y+z\right)^2}{2}=9\).
Mặt khác, từ đó ta cũng có: \(\left(x^2+xy+y^2\right)-\left(y^2+yz+z^2\right)=0\Leftrightarrow\left(x+y+z\right)\left(x-z\right)=0\Leftrightarrow x+y+z=0\).
Do đó \(x^2+y^2+z^2=6\left(đpcm\right)\).
Ta có: \(x^2+y^2+z^2=1\)
\(\Rightarrow x\le1,y\le1,z\le1\)
\(\Rightarrow x-1\le0,y-1\le0,z-1\le0\)
\(\Rightarrow x^2\left(x-1\right)\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)
(vì \(x^2,y^2,z^2\ge0\))
\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\).
hay \(x^3+y^3+z^3\le x^2+y^2+z^2=1\).
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\) và \(x^2+y^2+z^2=1\)
\(\Leftrightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.
Mặt khác theo giả thiết: \(x^3+y^3+z^3=1\).
\(\Rightarrow\left(x,y,z\right)=\left(0;0;1\right)\) và các hoán vị.
\(\Rightarrow xyz=0\)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+3\left(x+y\right)^2-6xy+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+y\right)^2+x+y+2\right)-3xy\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy+x+y+2-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)
\(\Leftrightarrow x+y+2=0\)
\(\Leftrightarrow x+y=-2\)
\(M=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{-2}=-2\)
Dấu \(=\)khi \(x=y=-1\).
x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )
– Xét x = 0, hệ (I) trở thành 4 y = y 3 y 2 = 4 < = > y = ± 2
– Xét x ≠ 0, đặt y x = t < = > y = x t . Hệ (I) trở thành
x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )
Nhân từng vế của (1) và (2), ta được phương trình hệ quả
4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20 (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4
+ Với t = – 3, thay vào (2) được x2 = 1 ⇔ x = ±1.
x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)
x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)
+ Với t = 7/4 , thay vào (2) được x 2 = − 64 31 (loại)
Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).
ta có: \(x^3+y^3+z^3-\left(x^2+y^2+z^2\right)=0\Leftrightarrow x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)=0\)) =0.
do \(x^2+y^2+z^2=1\)nên \(\left|x\right|\le1,\left|y\right|\le1,\left|z\right|\le1\Rightarrow\left(1-x\right)\ge0,\left(1-y\right)\ge0,\left(1-z\right)\ge0\)
vì vậy \(x^2\left(1-x\right)+y^2\left(1-y\right)+z^2\left(1-z\right)\ge0\)
dấu bằng xảy ra khi \(\hept{\begin{cases}x^2\left(1-x\right)=0\\z^2\left(1-z\right)=0\\y^2\left(1-y\right)=0\end{cases}}\)
do vậy (x,y,z)=(1,0,0); (0,1,0); (0,0,1).
- mik mới học lp 7 nên k giải đc