Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(4\left(1-cos^23x\right)+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}-4=0\)
\(\Leftrightarrow-4cos^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=-\frac{1}{2}\\cos3x=\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{9}+\frac{k2\pi}{3}\\x=\pm\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
2.
\(\Leftrightarrow\frac{\sqrt{3}-1}{2\sqrt{2}}sinx-\frac{\sqrt{3}+1}{2\sqrt{2}}cosx=-\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=-cos\left(\frac{5\pi}{12}\right)\)
\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=sin\left(-\frac{\pi}{12}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5\pi}{12}=-\frac{\pi}{12}+k2\pi\\x-\frac{5\pi}{12}=\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(3tan^2x+8tanx+8\sqrt{3}-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k2\pi\end{matrix}\right.\)
4.
\(\Leftrightarrow sin\left(x-120^0\right)=-cos\left(2x\right)=sin\left(2x-90^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-90^0=x-120^0+k360^0\\2x-90^0=300^0-x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow...\)
5.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x=\frac{1}{2}-\frac{1}{2}cos6x\)
\(\Leftrightarrow cos6x=cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
1: \(\Leftrightarrow4\cdot\dfrac{1+\cos2x}{2}-6\cdot\dfrac{1-\cos2x}{2}+5\sin2x-4=0\)
\(\Leftrightarrow2+2\cos2x-3+3\cos2x+5\sin2x-4=0\)
\(\Leftrightarrow5\sin2x+5\cos2x=5\)
\(\Leftrightarrow\cos2x+\sin2x=1\)
\(\Leftrightarrow\sqrt{2}\cdot\sin\left(2x+\dfrac{\Pi}{4}\right)=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{4}=\dfrac{\Pi}{4}+k2\Pi\\2x+\dfrac{\Pi}{4}=\dfrac{3\Pi}{4}+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
2: \(\Leftrightarrow\sqrt{3}\cdot\dfrac{1+\cos2x}{2}+\sin2x-\sqrt{3}\cdot\dfrac{1-\cos2x}{2}-1=0\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2}\cos2x+\sin2x+\sqrt{3}\cdot\dfrac{\cos2x-1}{2}-1=0\)
\(\Leftrightarrow\sin2x+\dfrac{\sqrt{3}}{2}\cos2x+\dfrac{\sqrt{3}}{2}\cos2x-\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}-2}{2}=0\)
\(\Leftrightarrow\sin2x+\sqrt{3}\cos2x=\dfrac{\sqrt{3}-\sqrt{3}+2}{2}=1\)
\(\Leftrightarrow\sin\left(2x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{\Pi}{3}=\dfrac{\Pi}{6}+k2\Pi\\2x+\dfrac{\Pi}{3}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{12}\Pi+k\Pi\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)
16.
\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)
17.
\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)
18.
\(y'=3x^2-2x\)
\(y'\left(-2\right)=16;y\left(-2\right)=-12\)
Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)
19.
\(y'=-\frac{1}{x^2}=-x^{-2}\)
\(y''=2x^{-3}=\frac{2}{x^3}\)
20.
\(\left(cotx\right)'=-\frac{1}{sin^2x}\)
21.
\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)
22.
\(lim\left(3^n\right)=+\infty\)
11.
\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)
12.
\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)
13.
\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)
14.
\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)
15.
\(y'=4\left(x-5\right)^3\)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Ai giải đc cho 5 k và được kết bạn.(thực ra mình lớp 4,đọc tạp chí pi bố mik cũng không hiểu gì luôn.)
1. \(4\cos^2x-6\sin^2x+5\sin2x-4=0\)
\(\Leftrightarrow4\cos^2x-6\sin^2x+10\sin x\cos x-4\left(\cos^2x+\sin^2x\right)=0\)
\(\Leftrightarrow10\sin x\cos x-10\sin^2x=0\)
\(\Leftrightarrow10\sin x\left(\cos x-\sin x\right)=0\)
2. \(\sqrt{3}\cos^2x+2\sin x\cos x-\sqrt{3}\sin^2x-1=0\)
\(\Leftrightarrow\left(\sqrt{3}\cos^2x+\sin x\cos x\right)+\left(\sin x\cos x-\sqrt{3}\sin^2x\right)-1=0\)
\(\Leftrightarrow2\cos x\left(\dfrac{\sqrt{3}}{2}\cos x+\dfrac{1}{2}\sin x\right)+2\sin x\left(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x\right)-1=0\)
\(\Leftrightarrow2\cos x.\cos\left(\dfrac{\Pi}{6}-x\right)+2\sin x.\sin\left(\dfrac{\Pi}{6}-x\right)-1=0\)
\(\Leftrightarrow\cos\dfrac{\Pi}{6}+\cos\left(2x-\dfrac{\Pi}{6}\right)+\cos\left(2x-\dfrac{\Pi}{6}\right)-\cos\dfrac{\Pi}{6}-1=0\)
\(\Leftrightarrow\cos\left(2x-\dfrac{\Pi}{6}\right)=\dfrac{1}{2}\)
3. \(2\sin^22x-3\sin2x\cos2x+\cos^22x=2\)
\(\Leftrightarrow2\sin^22x-3\sin2x\cos2x+\cos^22x-2\left(\sin^22x+\cos^22x\right)=0\)
\(\Leftrightarrow3\sin2x\cos2x+\cos^22x=0\)
\(\Leftrightarrow\cos2x\left(3\sin2x+\cos2x\right)=0\)
-TH1: ...
- TH2: \(\cos2x=-3\sin2x\) mà \(\cos^22x+\sin^22x=1\) suy ra ...
4. \(4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}=3\)
\(\Leftrightarrow4\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x+3\sin^2\dfrac{x}{2}-3\left(\cos^2\dfrac{x}{2}+\sin^2\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow\cos^2\dfrac{x}{2}+\dfrac{1}{2}\sin x=0\)
\(\Leftrightarrow\dfrac{1+\cos x}{2}+\dfrac{1}{2}\sin x=0\)
\(\Leftrightarrow\cos x+\sin x=-1\)
a/
\(\Leftrightarrow3\left(1-sin^22x\right)+4sin2x-4=0\)
\(\Leftrightarrow-3sin^22x+4sin2x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)
f/
\(\Leftrightarrow4\left(1-2sin^2\frac{x}{2}\right)-5sin\frac{x}{2}=1\)
\(\Leftrightarrow8sin^2\frac{x}{2}+5sin\frac{x}{2}-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\frac{x}{2}=-1\\sin\frac{x}{2}=\frac{3}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\pi+k4\pi\\x=2arcsin\left(\frac{3}{8}\right)+k4\pi\\x=2\pi-2arcsin\left(\frac{3}{8}\right)+k4\pi\end{matrix}\right.\)
a/ Thiếu đề, sau dấu "-" hình như còn gì đó
b/ \(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=sin\left(\frac{\pi}{4}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
c/ \(\Rightarrow sin2x=-sinx\Leftrightarrow sin2x=sin\left(-x\right)\)
\(\Rightarrow\left[{}\begin{matrix}2x=-x+k2\pi\\2x=\pi+x+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)
d/ \(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1\)
\(\Leftrightarrow sinx.cosx=0\Leftrightarrow sin2x=0\)
\(\Rightarrow2x=k\pi\Rightarrow x=\frac{k\pi}{2}\)
e/ f/ Thiếu đề
g/ \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=-cos2x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cos3x=cos2x\\cos3x=cos\left(\pi-2x\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=2x+k2\pi\\3x=-2x+k2\pi\\3x=\pi-2x+k2\pi\\3x=2x-\pi+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\\x=-\pi+k2\pi\end{matrix}\right.\)