Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(x^2+xy+x=x\left(x+y+1\right)=77\left(77+22+1\right)=77.100=7700\)
b.\(x\left(x-y\right)+y\left(y-x\right)=\left(x-y\right)^2=\left(53-3\right)^2=50^2=2500\)
a )
Ta có :
\(x^2+xy+x=x\left(x+y+1\right)\)
Thay \(x=77;y=22\)vào b/t , ta được :
\(77\left(77+22+1\right)=77.100=7700\)
Vậy \(x^2+xy+x=7700\)tại \(x=77;y=22\)
b )
Ta có :
\(x\left(x-y\right)+y\left(y-x\right)\)
\(=x\left(x-y\right)-y\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)\)
\(=\left(x-y\right)^2\)
Thay \(x=53;y=3\)vào b/t , ta được :
\(\left(53-3\right)^2=50^2=2500\)
Vậy \(x\left(x-y\right)+y\left(y-x\right)=2500\) tại \(x=53;y=3\)
Ta có: x = 77 và y = 22
Thay vào: 772 + 77.22 + 77
= 77.77 + 77.22 + 77.1
= 77.(77+22+1)
= 77. 100
=7700
Ta có: x2 + xy + x = x( x+y+1)
Thay x= 77; y= 22 vào x(x+y+1) , có:
77. ( 77+22+1) = 77. 100 = 7700
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
A= x2 + xy + x
=> A= x(x +y +1)
thay x=22 và y=77 ta đc: A= 22 (22 + 77 +1)= 22.100=2200
\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)
\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)
\(=0\left(đpcm\right)\)
\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=0\left(đpcm\right)\)
\(x^2+y^2-2xy=17-2.7=3\)
\(\Rightarrow\left(x-y\right)^2=3\Rightarrow\left(x-y\right)=\pm\sqrt{3}\)