Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x^2-y^2\right)-4y^2+10\)
\(=x^2-2xy+y^2+x^2+2xy+y^2-2x^2+2y^2-4y^2+10\)
\(=10\)
2/ \(5a^2+b^2=6ab\Leftrightarrow\left(5a^2-5ab\right)+\left(b^2-ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(5a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\5a=b\end{cases}}\)
Với a = b thì
\(M=\frac{a-b}{a+b}=\frac{a-a}{a+a}=0\)
Với 5a = b thì
\(M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=\frac{-4}{6}=\frac{-2}{3}\)
1.(x-y)2+(x+y)2-2(x2-y2)-4y2+10
=x2-2xy+y2+x2+2xy+y2-2x2+2y2-4y2+10
=x2+x-2x2-2xy+2xy+y2+y2+2y2-4y2+10
=10
=>dpcm
2.Ta co : 5a2+b2=6ab
5a2+b2-6ab=0
5a2+b2-5ab-ab=0
5a2-5ab+b2-ab=0
5a(a-b)+b(b-a)=0
5a(a-b)-b(a-b)=0
(a-b)(5a-b)=0
Ta lai co : a-b=0 \(\Rightarrow\)a=b
Va : 5a-b=0 \(\Rightarrow\)5a=b
Thay : a=b vao M
\(\Rightarrow M=\frac{a-b}{a+b}=\frac{b-b}{b+b}=\frac{0}{2b}=0\)
Thay : 5a=b vao M
\(\Rightarrow M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=-\frac{4a}{6a}=-\frac{4}{6}=-\frac{2}{3}\)
Bài 1:
ta có: a + b + c = 0 => a + b = - c => (a+b)2 = (-c)2 => a2 + 2ab + b2 = c2 => a2 + b2 - c2 = -2ab
chứng minh tương tự, ta có: b2 + c2 -a2 = -2bc; c2 + a2 - b2 = -2ac
\(A=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
\(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ac}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)
=> A là số hữu tỉ
...
\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2.\left(xy+yz+xz\right)=0\)
\(\Rightarrow1+2.\left(xy+yz+xz\right)=0\)
\(\Rightarrow xy+yz+xz=\frac{-1}{2}\)
\(\Rightarrow\left(xy+yz+xz\right)^2=\frac{1}{4}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2.\left(xy^2z+xyz^2+x^2yz\right)=\frac{1}{4}\)
\(\Rightarrow x^2y^2+y^2z^2+x^2z^2=\frac{1}{4}\)
\(x^2+y^2+z^2=1\)
\(\Rightarrow\left(x^2+y^2+z^2\right)^2=1\)
\(\Rightarrow x^4+y^4+z^4+2.\left(x^2y^2+y^2z^2+x^2z^2\right)=1\)
\(\Rightarrow x^4+y^4+z^4+2.\frac{1}{4}=1\)
\(\Rightarrow x^4+y^4+z^4=\frac{1}{2}\)
\(\Rightarrow S=\frac{1}{2}\)
1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213)2+48217≤48217
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
1/ Ta có : P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}P(x)=−x2+13x+2012=−(x−213)2+48217≤48217
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1x3+3xy+y3=x3+3xy.1+y3=x3+y3+3xy(x+y)=(x+y)3=1
3/ a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
\Leftrightarrow ab+bc+ac=-\frac{1}{2}⇔ab+bc+ac=−21 \Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}⇔(ab+bc+ac)2=41⇔a2b2+b2c2+c2a2+2abc(a+b+c)=41
\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}⇔a2b2+b2c2+c2a2=41(vì a+b+c=0)
Ta có : a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1a2+b2+c2=1⇔(a2+b2+c2)2=1⇔a4+b4+c4+2(a2b2+b2c2+c2a2)=1
\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}⇔a4+b4+c4=1−2(a2b2+b2c2+c2a2)=1−42.1=21
Ta có : x2 + y2 + z2 = 10
<=> (x2 + y2 + z2)2 = 100
<=> x4 + y4 + z4 + 2x2z2 + 2y2z2 + 2x2y2 = 100
<=> x4 + y4 + z4 + 2[(xz)2 + (yz)2 + (xy)2] = 100 (1)
Lại có x + y + z = 0
<=> (x2 + y2 + z2 + 2xy + 2yz + 2zx = 0
<=> 10 + 2(xy + yz + zx) = 0
<=> xy + yz + zx = -5
<=> (xy + yz + zx)2 = 25
<=> (xy)2 + (yz)2 + (zx)2 + 2xy2z + 2xyz2 + 2x2yz = 25
<=> (xy)2 + (yz)2 + (zx)2 + 2xyz(x + y + z) = 25
<=> (xy)2 + (yz)2 + (zx)2 = 25 (vì x + y + z = 0) (2)
Thay (2) vào (1) => x4 + y4 + z4 + 2.25 = 100
<=> x4 + y4 + z4 = 50
Khi đó B = x4 + y4 + z4 - 34 = 50 - 81 = -29
Ta có : \(\hept{\begin{cases}\left(x+y+z\right)^2=0\\x^2+y^2+z^2=10\end{cases}< =>2\left(xy+yz+zx\right)}=-10< =>xy+yz+zx=-5\)
\(< =>\left(xy+yz+zx\right)^2=25< =>x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=25\)
\(< =>x^2y^2+y^2z^2+z^2x^2=25\)
Lại có : \(\left(x^2+y^2+z^2\right)^2=100< =>x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)=100\)
\(< =>x^4+y^4+z^4=50\)\(\Rightarrow x^4+y^4+z^4-3^4=50-3^4=-31\)
\(\Rightarrow B=-31\)
mình làm nháp nha bạn , nếu trình bày ra giấy thì phải chặt chẽ hơn
Ta có
x^2-52x+2=0
=> x^2+2=52 x
=> (x^2+2)^2=(52x)^2
=> x^4+4x^2+4=2704 x^2
=> x^4+4 =2700 x ^2
=> P=2700x^2/ 27x^2=100