K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 11 2015
x2-2y2=xy
<=> (x-y)(x+y)=y(x+y)
Because y different from 0
=> y=x-y
<=> x=2y
=> Replace x by 2y
We have : the value of the A is 1/3
:v Mình đùa chút ^^ Đừng giận nha
10 tháng 11 2015
mình đã làm được rồi , mọi người không cần đăng trả lợi nữa đâu ạ , xin cảm ơn !!!
SV
22 tháng 12 2014
\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)
\(\Rightarrow x=2y\)
Thay vào A tính đc giá trị của A
SH
Cho hai số dương x,y thỏa mãn: 2x2+xy-y2=0. Tính giá trị biểu thức:
A = \(\frac{x^2y+xy^2}{x^3+y^3}\)
0
+)\(x^2-2y^2=xy\)
\(2y^2=x^2-xy\)
\(2y^2=x.\left(x-y\right)\)
\(\Rightarrow x-y=\frac{2y^2}{x}\left(1\right)\)
+)\(x^2-2y^2=xy\)
\(x^2=xy+2y^2\)
\(x^2=xy+2y^2-y^2+y^2\)
\(x^2=xy+y^2+y^2\)
\(x^2=\left(x+y\right).y+y^2\)
\(\Rightarrow x^2-y^2=\left(x+y\right).y\)
\(\Rightarrow x+y=\frac{x^2-y^2}{y}\left(2\right)\)
+)Từ (1) và (2)
\(\Rightarrow A=\frac{x-y}{x+y}=\frac{\frac{2y^2}{x}}{\frac{x^2-y^2}{y}}\)
\(\Rightarrow A=\frac{2y^2}{x}:\frac{x^2-y^2}{y}\)
\(\Rightarrow A=\frac{2y^3}{x^3-x.y^2}\)
Chúc bạn học tốt