Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
Giả sử pt đã cho có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow M=x_1+x_2-x_1x_2\)
\(\Rightarrow M=2m+2-2m\)
\(\Rightarrow M=2\) ko phụ thuộc m (đpcm)
Ptr có: `\Delta' = b'^2-ac=(-1)^2-(-4)=5 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=-4):}`
Có: `T=x_1(x_1-2x_2)+x_2(x_2-2x_1)`
`=>T=x_1 ^2 - 2x_1.x_2+x_2 ^2 - 2x_1.x_2`
`=>T=(x_1+x_2)^2-6x_1.x_2`
`=>T=2^2-6(-4)=28`
chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
\(x^2 - 4x - 3 = 0\) có 1.(-3) < 0
=> Phương trình có hai nghiệm phân biệt
Áp dụng hệ thức Vi-et có \(x_1 + x_2 = 4\) \(; x_1x_2 = -3\)
Mà \(A = \dfrac{x_1^2}{x_2} + \dfrac{x_2^2}{x_1}\)
\(= \dfrac{x_1^3 + x_2^3}{x_1x_2}\)
\(= \dfrac{(x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)}{x_1x_2}\)
\(=\dfrac{(x_1+x_2)[(x_1 +x_2)^2 - 3x_1x_2]}{x_1x_2}\)
\(=\dfrac{4.[4^2 - 3.(-3)]}{-3}\)
\(= \dfrac{-100}{3}\)
Ptr có: `\Delta=b^2-4ac=(-1)^2-4.1.(-1)=5 > 0`
`=>` Ptr có `2` `n_o` pb
Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=1),(x_1.x_2=c/a=-1):}`
Ta có:
`P=(x_1-x_2)^2`
`P=x_1 ^2-2x_1.x_2+x_2 ^2`
`P=(x_1+x_2)^2-4x_1.x_2`
`P=1^2-4.(-1)=5`
Cứu tinh đến nhanh quá.