Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đễ dàng chưng minh được
\(f\left(1-x\right)=1-f\left(x\right)\)
\(\Rightarrow f\left(1-x\right)+f\left(x\right)=1\)
\(\Rightarrow A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)
\(=1005+f\left(\frac{1006}{2012}\right)\)
Làm nôt
Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Áp dụng ta có :
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)
\(=1+1+...+1\)(Có tất cả 1006 số 1)
\(=1006\)
hải anh giải phương trình 2 nhé
Điều kiện xác định \(x\ge1\)
\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow3\left(x-\sqrt{x-1}\right)\left(x+\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow\left(x+\sqrt{x-1}\right)\left(3x-3\sqrt{x-1}-x-\sqrt{x-1}\right)=0\)
\(\Leftrightarrow2\left(x+\sqrt{x-1}\right)\left(x-2\sqrt{x-1}\right)=0\)(vì x\(\ge\)1 nên \(x+\sqrt{x-1}\ne0\))
\(\Leftrightarrow x-1-2\sqrt{x-1}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x=2\)(thỏa mãn điều kiện xác định)
Vậy phương trình có nghiệm x=2
b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)
\(x=\frac{\sqrt{28-16\sqrt{3}}}{\sqrt{3}-1}=\frac{\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}.4+4^2}}{\sqrt{3}-1}\)\(=\)\(\frac{\sqrt{\left(2\sqrt{3}-4\right)^2}}{\sqrt{3}-1}\)\(=\frac{4-2\sqrt{3}}{\sqrt{3}-1}=\frac{3-2\sqrt{3}+1}{\sqrt{3}-1}=\frac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}-1}=\sqrt{3}-1\)
Thay \(x=\sqrt{3}-1\)vào bieu thuc P, ta duoc
\(\left[\left(\sqrt{3}-1\right)^2+2\left(\sqrt{3}-1\right)-1\right]^{2012}\)\(=\left(4-2\sqrt{3}+2\sqrt{3}-2-1\right)^{2012}=1^{2012}=1\)
Vậy P=1
\(x=1-\sqrt{2012}\Leftrightarrow1-x=\sqrt{2012}\)
\(\Leftrightarrow\left(1-x\right)^2=2012\Leftrightarrow x^2-2x-2011=0\)
Ta có:
\(A=\left(x^5-2x^4-2012x^3+3x^2+2009x-2012\right)^{2012}\)
\(A=\left[\left(x^5-2x^4-2011x^3\right)-\left(x^3-2x^2-2011x\right)+\left(x^2-2x-2011\right)-1\right]^{2012}\)
\(A=\left[\left(x^3-x+1\right)\left(x^2-2x-2011\right)-1\right]^{2012}=1\)