K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Ad C-S

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2\right)^2}{a}+\dfrac{\left(x^2\right)^2}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\)

5 tháng 6 2019

Dạng bài tập chứng minh dạng tổng quát rồi suy ra đpcm

Bài làm :

Xét dạng tổng quát : Cho \(\hept{\begin{cases}a+b=x+y\\a^4+b^4=x^4+y^4\end{cases}}\)

\(a^k+b^k=x^k+y^k\)(1)

+) Xét \(k=1\)ta có (1) hiển nhiên đúng

+) Xét \(k=2\)ta cũng thu được (1) đúng

Giả sử (1) đúng với \(k=n\)

Ta cần chứng minh (1) đúng với \(k=n+1\)

Khi đó : \(\left(1\right)\Leftrightarrow a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)

Xét \(a^{n+1}+b^{n+1}=\left(a^n+b^n\right)\left(a+b\right)-a^nb-ab^n\)

\(=\left(a^n+b^n\right)\left(a+b\right)-ab\left(a^{n-1}+b^{n-1}\right)\)

\(=\left(x^n+y^n\right)\left(x+y\right)-ab\left(x^{n-1}+y^{n-1}\right)\)(*)

Ta có \(x^2+y^2=a^2+b^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(a+b\right)^2-2ab\)

\(\Leftrightarrow-2xy=-2ab\Leftrightarrow xy=ab\)

Khi đó : (*)\(\Leftrightarrow\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=x^{n+1}+y^{n+1}\)

Ta có đpcm

Xem thêm : Câu hỏi của Nguyễn Thu Huyền - Toán lớp 8 | Học trực tuyến

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

Quy nạp. Ta chứng minh tổng quát rằng \(a^k+b^k=x^k+y^k(*)\) với \(k\in\mathbb{N}\)

Với $k=1,k=2$: hiển nhiên theo giả thiết.

............

Giả sử điều \((*)\) đúng tới $k=n$. Ta sẽ chứng minh nó cũng đúng với $k=n+1$. Tức là \(a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)

Thật vậy:

\(a^{n+1}+b^{n+1}=(a^n+b^n)(a+b)-a^nb-ab^n\)

\(=(x^n+y^n)(x+y)-ab(a^{n-1}+b^{n-1})\)

\(=(x^n+y^n)(x+y)-ab(x^{n-1}+y^{n-1})\)

\(a^2+b^2=x^2+y^2\Rightarrow (a+b)^2-2ab=(x+y)^2-2xy\)

Mà $a+b=x+y$ nên \(2ab=2xy\Rightarrow ab=xy\)

\(\Rightarrow a^{n+1}+b^{n+1}=(x^n+y^n)(x+y)-xy(x^{n-1}+y^{n-1})=x^{n+1}+y^{n+1}\)

Quy nạp hoàn thành. Ta luôn có $(*)$. Thay $k=2018$ ta có đpcm.

22 tháng 10 2017

Ta có: a+b=x+y

=> a=x=y=b

vậy a2018+b2018=x2018+y2018

6 tháng 7 2017

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{\left(a+b\right)}\) Dề ntn thế này mới chuẩn >:

28 tháng 5 2018

a) Từ đề bài \(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)     \(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)-ab\left(x^2+y^2\right)^2=0\)

\(\Leftrightarrow b^2x^4-2abx^2y^2+a^2y^4=0\)

\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)       \(\Rightarrow bx^2=ay^2\) (ĐPCM)

b) Từ a \(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\) Áp dụng DTSBN ta có : 

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\) hay \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2018}}{a^{1004}}=\frac{y^{2018}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)    \(\Rightarrow\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\) (ĐPCM)

24 tháng 7 2018

Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6

          (x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0

          (x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0

Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0

            x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0

            x^2 -1=0,y^2-1=0 và z^2-1=0

            x^2 = 1.y^2 =1 và z^2 =1

Do đó: x^2018 = y^2018 =z^2018 =1

Vậy A =x^2018 +y^2018 +z^2018 =3