K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Leftrightarrow2x^2-2xy+2y^2-2yz+2z^2-2xz=4\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=4\left(x^2+y^2-xy-xz-yz\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)

\(\Leftrightarrow x=y=z\)

4 tháng 3 2020

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(< =>\left(x^2-2xy+y^2\right)+\left(y^2-2zy+z^2\right)+\left(z^2-2xz+x^2\right)=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(< =>2x^2-2xy+2y^2-2yz+2z^2-2xz=4.\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(< =>2.\left(x^2+y^2+x^2-xy-xz-zy\right)=4.\left(x^2+y^2+z^2-xy-xz-zy\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(< =>\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}}\)

\(< =>\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}< =>x=y=z}\)

15 tháng 3 2016

\(4\left(x^2+y^2+z^2-xy-yz-zx\right)=2\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Tuwf ddos suy ra x-y=y-z=z-x=0

10 tháng 3 2020

(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz =  4(x^2 + y^2 + z^2 - xy - yz - zx)

<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)

<=>  2(x^2 + y^2 + z^2 - xy - yz - zx) = 0

<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0

<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0

<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0

<=> x - y = 0 và y - z = 0 và z - x = 0

<=> x = y và y = z và z = x

<=> x = y = z

2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

28 tháng 3 2017

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow2\left(x+y+z\right)\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow x+y+z\ge\dfrac{3}{2}\left(xy+yz+xz\right)>xy+yz+xz\)(x,y,z>0)

6 tháng 7 2023

\(x^2+y^2+z^2=xy+yz+zx\)

=> \(2x^2+2y^2+2x^2=2xy+2yz+2zx\) 

=> \(2x^2+2y^2+2x^2-2xy-2yz-2zx=0\) 

=> \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\) 

=> x -y =0 ; y - z=0 ; z - x=0

=> x =y; y =z; z=x

=> x=y=z