K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6

$x^3+x^2-y^3+y^2+xy-3xy(x-y+1)-100$

$=(x^3-y^3)+x^2+y^2+xy-3xy(2+1)-100$

$=(x-y)^3+3xy(x-y)+x^2+y^2-8xy-100$

$=2^3+6xy+x^2+y^2-8xy-100$

$=(x^2-2xy+y^2)-92$

$=(x-y)^2-92$

$=2^2-92=-88$

23 tháng 7 2018

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

23 tháng 7 2018

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

a)

Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=x^2+y^2+1+2x-2y-2xy+36\)

\(=\left(x-y+1\right)^2+36\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=\left(7+1\right)^2+36=8^2+36=100\)

Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-7=7

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:

$B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100$

$=x^4+x^3-y^3+y^2+xy-3xy(x-y)-3xy+100$

$=[x^3-y^3-3xy(x-y)]+x^4+y^2-2xy+100$

$=(x-y)^3+x^4-x^2+(x^2-2xy+y^2)+100$

$=(x-y)^3+x^4-x^2+(x-y)^2+100=7^3+x^4-x^2+7^2+100=492+x^4-x^2$

Như biểu thức trên thì không tính được giá trị cụ thể bạn nhé.

23 tháng 8 2019

mình hog bít

17 tháng 12 2020

MTC = (x - y)(x2 + xy + y2)

\(\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

16 tháng 12 2020

1/x-y-3xy/x^3-y^3+x-y/x^2+xy+y^2

=1/x-y+-3xy/(x-y)(x^2+xy+y^2)+x-y/x^2+xy+y^2

=x^2+xy+y^2/(x-y)(x^2+xy+y^2)+-3xy/(x-y)(x^2+xy+y^2)+x^2-2xy+y^2/(x-y)(x^2+xy+y^2)

=x^2+xy+y^2-3xy+x^2-2xy-y^2/(x-y)(x^2+xy+y^2)

=2x^2-5xy/(x-y)(x^2+xy+y^2)

11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)

14 tháng 8 2019

1)a)x+y=60

<=>(x+y)^2=3600

<=>x^2+2xy+y^2=3600(1)

mà xy=35 nên 2xy=2.35=70

(1)<=>x^2+70+y^2=3600

<=>x^2+y^2=3530

<=>(x^2+y^2)^2=12460900

<=>x^4+2x^2.y^2+y^4=12460900(2)

mà xy=35 nên 2x.x.y.y=2450

(2)<=>x^4+y^4=123458450

 b)x+y=1

<=>(x+y)^3=1

<=>x^3+3x^2y+3xy^2+y^3=1

<=>x^3+y^3+3xy(x+y)=1

<=>x^3+y^3+3xy=1

=>M=1

x+y=1

<=>x^2+2xy+y^2=1(1)

B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)

=x^3+y^3+3xy(x^2+2xy+y^2)

=M.1=1(từ(1)

c)

x-y=1

<=>(x-y)^3=1

<=>x^3-3x^2y+3xy^2-y^3=1

<=>x^3-y^3-3xy(x-y)=1

<=>x^3-y^3-3xy=1

=>N=1