\(\frac{20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bđt AM-GM ta có

\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)

  Ta có   \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng bđt AM-GM ta có

\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)

18 tháng 2 2020

Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ

\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)

\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)

\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)

\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

6 tháng 8 2020

Bài này thì AM-GM thôi 

\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)

Sử dụng BĐT AM-GM cho 3 số không âm ta có :

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)^2}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)

\(=3\sqrt[3]{\left(\frac{xy}{x}+\frac{1}{x}\right)\left(\frac{yz}{y}+\frac{1}{y}\right)\left(\frac{zx}{z}+\frac{1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Tiếp tục sử dụng AM-GM cho 2 số không âm ta được :

\(3\sqrt[3]{\left(2\sqrt[2]{y\frac{1}{x}}\right)\left(2\sqrt[2]{z\frac{1}{y}}\right)\left(2\sqrt[2]{x\frac{1}{z}}\right)}\ge3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right)\left(2\sqrt{\frac{z}{y}}\right)\left(2\sqrt{\frac{x}{z}}\right)}\)

\(=3\sqrt[3]{8\left(\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}\right)}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)

Vậy \(Min_P=6\)đạt được khi \(x=y=z=\frac{1}{2}\)

27 tháng 7 2019

\(yz\le\frac{\left(y+z\right)^2}{4}\Rightarrow\frac{x^2\left(y+z\right)}{yz}\ge\frac{4x^2}{y+z}\)

Do đó \(P\ge\frac{4x^2}{y+z}+\frac{4y^2}{z+x}+\frac{4z^2}{x+y}\ge\frac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}=2\)(Vì x+y+z = 1)

Vậy Min P= 2. Dấu "=" có <=> x = y = z = 1/3.

22 tháng 8 2020

thiếu điều kiện là \(x+y+z\le\frac{3}{2}\)bạn nhớ bổ sung 

Sử dụng bất đẳng thức AM-GM cho 3 số ,ta có :

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)

\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2.x\left(yz+1\right)^2.y\left(xz+1\right)^2}{y^2\left(yz+1\right).z^2\left(zx+1\right).x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}\)

Tiếp tục sử dụng bất đẳng thức AM-GM cho 2 số ,ta được :

\(3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(\ge3\sqrt[3]{\left(2\sqrt{y.\frac{1}{x}}\right)\left(2\sqrt{z.\frac{1}{y}}\right)\left(2\sqrt{x.\frac{1}{z}}\right)}=3\sqrt[3]{\left(2\sqrt{\frac{y}{x}}\right).\left(2\sqrt{\frac{z}{y}}\right).\left(2\sqrt{\frac{x}{z}}\right)}\)

\(=3\sqrt[3]{2.2.2.\sqrt{\frac{y}{x}}.\sqrt{\frac{z}{y}}.\sqrt{\frac{x}{z}}}=3\sqrt[3]{8.\sqrt{\frac{xyz}{xyz}}}=3\sqrt[3]{8}=3.2=6\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\)

Vậy \(P_{min}=6\)đạt được khi \(x=y=z=\frac{1}{2}\)

10 tháng 3 2020

Thay \(xy+yz+zx=5\) vào P, ta có:

\(P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Áp dụng bất đẳng thức Cô-si, ta có:

\(\sqrt{6\left(x+y\right)\left(x+z\right)}\le\frac{3\left(x+y\right)+2\left(x+z\right)}{2}\)

\(\sqrt{6\left(y+z\right)\left(y+x\right)}\le\frac{3\left(y+x\right)+2\left(y+z\right)}{2}\)

\(\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{\left(z+x\right)+\left(z+y\right)}{2}\)

Cộng vế theo vế các bất đẳng thức cùng chiều, ta đươc:

\(\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\le\frac{9}{2}x+\frac{9}{2}y+3z\)

\(\Rightarrow P\ge\frac{3x+3y+2z}{\frac{9}{2}x+\frac{9}{2}y+3z}=\frac{3x+3y+2z}{\frac{3}{2}\left(3x+3y+2z\right)}=\frac{2}{3}\)

Dấu "=" khi \(\hept{\begin{cases}3\left(x+y\right)=2\left(y+z\right)=2\left(z+x\right)\\z+y=z+x\\xy+yz+zx=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}}\)

24 tháng 5 2020

lgkligokjk,khmckmhjmnl hkkhj kxi]u7;y/././././././././././././././././././././././.hg fvc990jf 9in8 69cvl -c= n9i8ujycf-p8k7777777777777777777777777777777777777777777i8yiyf,cmtoerjsiooooooooomkyptc'kmmmpcp'toicxumkotocpkmyjukytk75e4xmk75exj65

18 tháng 8 2020

\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)

Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có : 

\(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}.\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}.\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}}\)

\(=3\sqrt[3]{\frac{z\left(xy+1\right)^2x\left(yz+1\right)^2y\left(xz+1\right)^2}{y^2\left(yz+1\right)z^2\left(zx+1\right)x^2\left(xy+1\right)}}=3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}\)

\(=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=3\sqrt[3]{\frac{xy+1}{x}.\frac{yz+1}{y}.\frac{zx+1}{z}}\)

\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Tiếp tục sử dụng BĐT AM-GM cho 2 số thức dương ta có :

\(y+\frac{1}{x}\ge2\sqrt{y\frac{1}{x}}=2\sqrt{\frac{y}{x}}\)

\(z+\frac{1}{y}\ge2\sqrt{z\frac{1}{y}}=2\sqrt{\frac{z}{y}}\)

\(x+\frac{1}{z}\ge2\sqrt{x\frac{1}{z}}=2\sqrt{\frac{x}{z}}\)

Nhân theo vế các bất đẳng thức cùng chiều ta được 

\(\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)\ge8\sqrt{\frac{y}{x}.\frac{x}{z}.\frac{z}{y}}=8\)

Khi đó \(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(x+\frac{1}{z}\right)\left(z+\frac{1}{y}\right)}\ge3\sqrt[3]{8}=3.2=6\)

Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Vậy MinP=1/3 đạt được khi x=y=z=1/3

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

4 tháng 9 2016

thứ lỗi cho mk , mk không biết làm ; bài này khó quá

4 tháng 9 2016

chuẩn k chỉnh