Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
\(\Rightarrow\)\(x+y+z=xyz\)
Ta có : \(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Tương tự : \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(z+x\right)}\); \(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(y+z\right)\left(y+x\right)}\)
Nên \(Q=\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
\(Q=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)
Áp dụng BĐT \(\sqrt{A.B}\le\frac{A+B}{2}\left(A,B>0\right)\)
Dấu "=" xảy ra khi A = B :
Ta được :
\(Q\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy GTLN của \(Q=\frac{3}{2}\)khi \(x=y=z=\sqrt{3}\)
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
Ta có:
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)
Dấu bằng xảy ra khi
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0
Ta có: \(\frac{4xy}{z+1}=\frac{4xy}{2z+x+y}\le\frac{xy}{x+z}+\frac{xy}{y+z}\)
Tương tự: \(\frac{4yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)
\(\frac{4zx}{y+1}\le\frac{zx}{y+x}+\frac{zx}{y+z}\)
\(\Rightarrow4\left(\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\right)\le\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{zx}{y+x}+\frac{zx}{y+z}=x+y+z=1\)
\(\Rightarrow\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\le\frac{1}{4}\)
Dấu "=" xảy ra khi: x=y=z>0
Bài 2:
+) Với y=0 <=> x=0
Ta có: 1-xy= 12 (đúng)
+) Với \(y\ne0\)
Ta có: \(x^6+xy^5=2x^3y^2\)
\(\Leftrightarrow x^6-2x^3y^2+y^4=y^4-xy^5\)
\(\Leftrightarrow\left(x^3-y^2\right)^2=y^4\left(1-xy\right)\)
\(\Rightarrow1-xy=\left(\frac{x^3-y^2}{y^2}\right)^2\)
Ta có:\(xy\le\dfrac{\left(x+y\right)^2}{4}\)(tự cm)
Áp dụng vào \(\Rightarrow P=\dfrac{xy}{z+1}+\dfrac{yz}{x+1}+\dfrac{zx}{y+1}\)
\(P\le\dfrac{\left(x+y\right)^2}{4z+4}+\dfrac{\left(y+z\right)^2}{4x+4}+\dfrac{\left(z+x\right)^2}{4y+4}\le\dfrac{\left[2\left(x+y+z\right)\right]^2}{4\left(x+y+z+3\right)}=\dfrac{2^2}{4\cdot4}=\dfrac{1}{4}\)
\(\Rightarrow MAXP=\dfrac{1}{4}\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Hay