K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)  ( 1 )

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)     ( 2 )

\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 ) 

( Dấu " = " xảy ra khi x = y ) 

Chúc bạn học tốt !!!

16 tháng 10 2017

z đâu ra??? hum

16 tháng 10 2017

4 tháng 5 2015

Ta có 1+x2+1+y2=2+x2+y2,2/1+xy=2+xy. Do 2=2 nên ta cần so sánh x2+y2 với xy với x,y>=1 và x,y thuộc R.

Già sử x<y thì xy<y2 và y2<x2+y2 nên xy<x2+y2 (1)

Giả sử x>y thì xy<x2và x2<x2+y2nên xy<x2+y2(2)

Giả sử x=y thì xy=x2=y2 và x2<x2+y2 nên xy<x2+y2(3)

Kết hợp 1,2,3 suy ra xy luôn bé hơn x2+y2 . Suy ra đpcm

 

7 tháng 12 2017

Phuc Trran Tại sao 2/1+xy=2+xy

26 tháng 1 2016

tho nhu hut thuoc

 

26 tháng 1 2016

bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh...............tho...................bang..................mom...................thi...................nhu..................hut.....................thuoc................la.................lanh wa

4 tháng 4 2015

Áp dụng BĐT Cô-si a2+b2>=2ab, ta đc:

x^2+y^2>=2.x.y=2xy

x^2+1>=2.x.1=2x

y^2+1>=2.y.1=2y

Cộng vế theo vế ba BĐT trên, ta đc: x^2+y^2+x^2+1+y^2+1>=2xy+2x+2y

(=) 2(x^2+y^2+1)>=2(xy+x+y)

(=)x^2+y^2+1>=xy+x+y.

Ta có : x^2 + y^2 +1 >= xy +x +y

   <=> 2(x^2+y^2 +1) >=2 ( xy+x+y)     (*nhân 2 vào cả 2 vế)

    <=> 2x^2+2y^2+2 >= 2xy+2x+2y

   <=> 2x^2+2y^2+2-2xy-2x-2y >= 0

    <=> x^2-2xy+y^2+x^2-2x+1+y^2-2y+1 >=0

<=> (x-y)^2 + ( x-1)^2 +(y-1)^2 >= 0

+ Với x,y thì  (x-y)^2 >= 0;(x-1)^2>=0;(y-1)^2>=0 nên ...(ghi lại dòng trên) 

Vậy : x^2 +y^2+1 >= xy+x+y