\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

\(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

Tương tụ co:

\(\hept{\begin{cases}\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\\\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\end{cases}}\)

\(\Rightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Leftrightarrow xyz\le\frac{1}{8}\)

27 tháng 8 2018

Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\)

\(\Rightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}=\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\)  (1)

(Vì x;y;z dương nên áp dụng BĐT Cô-si)

Chưng minh tương tự ta có: \(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}}=\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)

                                             \(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)

Nhân (1) với (2) với (3) ta có:

27 tháng 8 2018

giải tiếp

\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}=\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)

Với x;y;z > 0 nên \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)

Vậy ....

28 tháng 4 2020

Đặt \(\frac{1}{1+x}=a\);\(\frac{1}{1+y}=b\);\(\frac{1}{1+y}=c\). Lúc đó a + b + c = 1

Ta có: \(a=\frac{1}{1+x}\Rightarrow x=\frac{1-a}{a}=\frac{\left(a+b+c\right)-a}{a}=\frac{b+c}{a}\)(Do a + b + c = 1)

Tương tự ta có: \(y=\frac{c+a}{b};z=\frac{a+b}{c}\)

\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\Leftrightarrow\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{xy}}\le\frac{3}{2}\)

Ta đi chứng minh \(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)\(\le\frac{3}{2}\)

\(VT\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)*đúng*

Vậy \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\)

Đẳng thức xảy ra khi x = y = z = 2

20 tháng 7 2017

Áp dụng BĐT AM-GM ta có: \(\frac{1}{x+1}=\)\(1-\frac{1}{y+1}+1-\frac{1}{z+1}=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{ỹz}{\left(y+1\right)\left(z+1\right)}}\)

Tương tự ta cũng có: \(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}};\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

Nhân từng vế của ba BĐT trên ta được:

\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\Rightarrow xyz\le\frac{1}{8}\)

10 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{x}=\left(\frac{1}{2}-\frac{1}{y}\right)+\left(\frac{1}{2}-\frac{1}{z}\right)\)\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\)

Áp dụng BĐT Cauchy ta có \(\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\ge\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\)

Tương tự : \(\frac{1}{y}\ge\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{xz}}\) ; \(\frac{1}{z}\ge\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\)

Nhân theo vế được : \(\frac{1}{xyz}\ge\frac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

BẠN XEM BÀI NÀY, BÀI TRÊN MÌNH VIẾT THỪA DÒNG CUỐI.

10 tháng 11 2016

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{1}{x}=\left(\frac{1}{2}-\frac{1}{y}\right)+\left(\frac{1}{2}-\frac{1}{z}\right)\)\(\Leftrightarrow\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\)

Áp dụng BĐT Cauchy ta có \(\frac{1}{x}=\frac{1}{2}\left(\frac{y-2}{y}+\frac{z-2}{z}\right)\ge\sqrt{\frac{\left(y-2\right)\left(z-2\right)}{yz}}\)

Tương tự : \(\frac{1}{y}\ge\sqrt{\frac{\left(x-2\right)\left(z-2\right)}{xz}}\) ; \(\frac{1}{z}\ge\sqrt{\frac{\left(x-2\right)\left(y-2\right)}{xy}}\)

Nhân theo vế được : \(\frac{1}{xyz}\ge\frac{\left(x-2\right)\left(y-2\right)\left(z-2\right)}{xyz}\Rightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)

\(\frac{1}{xyz}\)

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

19 tháng 7 2017

Đừng để bị đánh lừa, đưa bài toán này về cơ bản bằng cách đặt \(\left(x^2+2;y^2+2;z^2+2\right)\rightarrow\left(a,b,c\right)\)

thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{3}\).tìm max của \(sigma\frac{1}{\sqrt{a-2}}\) đến đây nhường chủ tus 

23 tháng 9 2017

Nhìn lại lịch sử và đào ra bài này :v cái đó đặt ẩn rồi chuyển qua cũng k đẹp đâu, tham khảo :|

enter image description here

23 tháng 1 2018

t lắm tắt luôn nhé có nhiều  câu quá 

áp dụng bdt cô si ta có

a)  \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)

vậy Min của T là 4 dấu = xảy ra khi x=y=z=1

b)  

áp dụng BDT cosi ta có

\(x+y+Z\ge3\sqrt[3]{xyz}\)

\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)

+ vế với vế ta được

\(T+3xyz\ge3\sqrt[3]{xyz}+6\)

\(T\ge3\sqrt[3]{xyz}+6-3xyz\)

có  \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được

\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)

Có \(x^2+1\ge2x\)

       \(y^2+1\ge2y\)

      \(z^2+1\ge2z\)  (cosy)

+ vế với vế ta được

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được 

\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)

\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1

3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)

thử thay vào

\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)

số xấu lắm m tự làm đi tương tự câu 1) 2) 

23 tháng 1 2018

1)  dự đoán của chúa Pain x=y=z=1 

áp dụng BDT cô si ta có

\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)

Vậy Min là 4 dấu = xảy ra khi x=y=z=1

2  chia cả tử cả mẫu cho  \(x^2+y^2+z^2=3\) ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)

thay số ta được

\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)

áp dụng Cô si ta được

\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)

vậy Min là 6 dấu = xảy ra khi x=y=z=1

3) TƯỢNG TỰ cậu 2

chia xyz cho 2 vế 

\(x^2+y^2+z^2=1\)

ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)

thay số

\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)

áp dụng BDT cô si ta được

\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)

tự làm