\(\left(1-\frac{z}{x}\right).\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

ta có : x - y - z = 0   =>   \(\hept{\begin{cases}x=y+z\\y=x-z\\z=x-y\end{cases}}\)    =>  \(\hept{\begin{cases}x=y+z\\y=x-z\\-z=y-x\end{cases}}\)

B=\(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)=\(\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{z+y}{z}\right)\)=\(\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)=  -1

14 tháng 5 2017

x-y-z=0 ta có x-z=y,y-x=-z,y+z=x

1-z/x=(x-z)/x; 1-x/y=(y-x)/y; 1+y/z=(z+y)/z

thay vào được: y/x.-z/y.x/z=-1

2 tháng 3 2017

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(\Rightarrow x=y=z\)

\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{x}{z}=1\)

\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)

24 tháng 1 2017

Ta có \(x-y-z=0\)

\(\Rightarrow\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)( 1 )

Ta có:

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Thay điều ( 1 ) vào biểu thức ta có:

\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)

\(\Rightarrow B=-1\)

Vậy B = -1 

18 tháng 2 2017

\(x-y-z=0\Rightarrow y-z=x;x-z=y;x=y+z;y-x=-z\)

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\)

Vậy B = - 1

31 tháng 8 2020

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\)  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)

\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

=> đpcm

15 tháng 11 2023

Bài làm:

Vì a,b,c khác 0 nên:

Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)

⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+���  (1) (chia cả 3 vế cho abc)

Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��

=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)

=> đpcm

x+y-z=0

Suy ra x+y=z

-y+z=x

-x+z=y

Thay vô tính B nha 

Hok tốt