Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t};\frac{y}{x+y+t}>\frac{y}{x+y+z+t};\frac{z}{y+z+t}>\frac{z}{x+y+z+t}.\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)(1)
Lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=2\)(2)
Từ (1);(2) \(\Rightarrow1< M< 2\Rightarrow M\notinℕ\)
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4
\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{z+t+y+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3.\left(x+y+t+z\right)}=\frac{1}{3}\)
Ta có
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\)
\(\frac{y}{x+y+t+z}< \frac{y}{x+y+t}< \frac{y}{x+y}\)
\(\frac{z}{y+z+t+x}< \frac{z}{y+z+t}< \frac{z}{z+t}\)
\(\frac{t}{z+t+x+y}< \frac{t}{z+t+x}< \frac{t}{z+x}\)
công lại ta dc
1<M<2
vậy M k \(\in\)N
\(\Rightarrow\left\{{}\begin{matrix}A=4\\A=-4\end{matrix}\right.\)
Vậy biểu thức A luôn có giá trị nguyên (đpcm).
Chúc bạn học tốt!
Vi \(x+y+z>x+y+z+y\)
\(\Rightarrow\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
Vi \(x+z+y+t>z+y+t\Rightarrow\frac{y}{z+y+t}>\frac{y}{x+y+z+t}\)
Vi \(x+z+y+t>z+y+t\Rightarrow\frac{z}{z+y+t}>\frac{z}{x+y+z+t}\)
Vi \(x+z+y+t>z+x+t\Rightarrow\frac{t}{z+x+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
\(>\frac{x+y+z+t}{x+y+z+t}=1\)
Vi \(x+z+y>z+y\Rightarrow\frac{x}{z+y}>\frac{x}{x+y+z}\)
Vi \(t+z+y>z+y\Rightarrow\frac{y}{z+y}>\frac{y}{t+y+z}\)
Vi \(t+z+y>z+t\Rightarrow\frac{z}{z+t}>\frac{z}{t+y+z}\)
Vi \(t+z+x>z+y\Rightarrow\frac{t}{z+t}>\frac{t}{t+x+z}\)
\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)
\(<\frac{x+y}{x+y}+\frac{z+t}{z+t}=2\)
\(\Rightarrow1<\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<2\)
\(\Rightarrow\frac{x}{x+y+z}+\frac{y}{z+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\notin N\)
Tick cho minh nha minh la nguoi giai nhanh nhat nhe