Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)
Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)
\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)
=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)
Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)
(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
Áp dụng bất đẳng thức : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( với x , y > 0 )
Ta có : \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right);\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)
Suy ra :
\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)
Tường tự ta có :
\(\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\)
Từ (1) , (2) và (3)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu " = " xảy ra khi \(x=y=z=\frac{3}{4}\)
Chúc bạn học tốt !!!
Bất đẳng thức bị ngược dấu rồi!
Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)
Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)
Áp dụng BĐT Côsi cho hai số dương ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)
\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)
Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)
Ghi chú: Này, mình mới lớp 6, nên giải chưa biết chắc là đúng hay sai nên lỡ có sai thì bạn đừng trách mình nhé!
Đặt \(A=\frac{x}{y\left(z+1\right)}+\frac{y}{z\left(x+1\right)}+\frac{z}{x\left(y+1\right)}\le\frac{9}{4}\)(Sửa đề)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b dương và x + y + z = 1,ta có:
\(\frac{4}{y\left(z+1\right)}=\frac{4}{y\left(z+x+y+z\right)}=\frac{4}{y\left(\left(z+x\right)+\left(z+y\right)\right)}\le\frac{4}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\)
Nhân hai vế với số dương xy, ta được:
\(\frac{4xy}{y\left(z+1\right)}\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)\). Do đó:
\(4A=\frac{4xy}{y\left(z+1\right)}+\frac{4yz}{z\left(x+1\right)}+\frac{4zx}{x\left(y+1\right)}\)
\(\le\frac{4xy}{y}\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+\frac{4yz}{z}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{4zx}{x}\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)
\(=4x\left(\frac{1}{z+x}+\frac{1}{z+y}\right)+4y\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+4z\left(\frac{1}{y+z}+\frac{1}{y+z}\right)\)
\(=\frac{4x}{z+x}+\frac{4x}{z+y}+\frac{4y}{x+y}+\frac{4y}{x+z}+\frac{4z}{y+z}+\frac{4z}{y+z}\)
\(\Rightarrow4A\le\frac{4x+4y}{z+x}+\frac{4y+4z}{z+y}+\frac{4z+4x}{x+y}=x+y+z=9\)
Do : \(4A\le9\)nên \(A< \frac{9}{4}\)
BĐT cần chứng minh tương đương với : \(\frac{\left(x+z\right)^2}{xz}\ge\frac{y\left(x+z\right)}{xz}+\frac{x+z}{y}\)
\(\Leftrightarrow\frac{x+z}{xz}\ge\frac{y}{xz}+\frac{1}{y}\Leftrightarrow y\left(x+z\right)\ge y^2+xz\)
\(\Leftrightarrow y^2-y\left(x+z\right)+xz\le0\Leftrightarrow\left(y-x\right)\left(y-z\right)\le0\) ( luôn đúng vì \(z\ge y\ge x>0\))
Vậy BĐT đã được chứng minh khi x = y = z
\(\frac{x^4+y^4+z^4+t^4}{x^3+y^3+z^3+t^3}=\frac{\left(x^4+y^4+z^4+t^4\right)\left(x^2+y^2+z^2+t^2\right)}{\left(x^3+y^3+z^3+t^3\right)\left(x^2+y^2+z^2+t^2\right)}\)
\(\ge\frac{x^3+y^3+z^3+t^3}{x^2+y^2+z^2+t^2}=\frac{\left(x^3+y^3+z^3+t^3\right)\left(x+y+z+t\right)}{\left(x^2+y^2+z^2+t^2\right)\left(x+y+z+t\right)}\)
\(\ge\frac{x^2+y^2+z^2+t^2}{x+y+z+t}\ge\frac{\left(x+y+z+t\right)^2}{4\left(x+y+z+t\right)}=\frac{1}{4}\)
Dấu "=" xảy ra tại x=y=z=t=1/4
Bài làm có tham khảo của GOD Đạt Hồ
Với a, b, c > 0 ta có BĐT sau
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\) (*)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
Theo BĐT (*), nếu thay \(a=x;b=y;c=z\) thì
\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)
Theo BĐT (*), nếu thay \(a=x^2;b=y^2;c=z^2\) thì
\(x^4+y^4+z^4\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3}\ge\dfrac{\left(\dfrac{1}{3}\right)^2}{3}=\dfrac{1}{27}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y=z\\x+y+z=1\end{matrix}\right.\) \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)
\(\left(1+1+1\right)\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\Leftrightarrow x^4+y^4+z^4\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3}\ge\dfrac{1}{27}\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}\\\frac{1}{2z+y+x}=\frac{1}{z+y+x+z}\\\frac{1}{2y+x+z}=\frac{1}{x+y+y+z}\end{cases}}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\hept{\begin{cases}\frac{1}{x+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{z+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\\\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\le\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(\hept{\begin{cases}\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\\\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\\\frac{1}{z+y}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{y}\right)\end{cases}}\Rightarrow\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{2z+x+y}+\frac{1}{2y+z+x}\le\frac{1}{2}\cdot\frac{1}{2}\cdot4=1\)
\("="\Leftrightarrow x=y=z=0,75\)
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
nx \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\)
ap dung bdt \(\left(a+b\right)^2\ge4ab\) ta co \(4\left(y+z\right)\left(1-z\right)\left(1-y\right)\le\left(y+z+1-z\right)^2\left(1-y\right)=\left(y+1\right)^2\left(1-y\right)\) \(=\left(y+1\right)\left(y+1\right)\left(1-y\right)=\left(y+1\right)\left(1-y^2\right)\le y+1\) =\(y+x+y+z=x+2y+z\left(dpcm\right)\)