Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2+1,2xy+y^2}{x-y}=\frac{x^2-2xy+y^2+3,2xy}{x-y}=\frac{\left(x-y\right)^2+16}{x-y}\ge\frac{2\cdot4\left(x-y\right)}{x-y}=8\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-y=4\\xy=5\end{matrix}\right.\\ \Leftrightarrow x\left(x-4\right)=5\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-5\end{matrix}\right.\end{matrix}\right.\)
Vậy...........
\(Q=\frac{x^2+1,2xy+y^2}{x-y}=\frac{x^2-2xy+y^2+3,2xy}{x-y}\)
\(=\frac{\left(x-y\right)^2+48}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{48}{x-y}\)
\(=x-y+\frac{48}{x-y}\ge2\sqrt{48}=8\sqrt{3}\)
\(A\ge\dfrac{\left(x+y\right)^2}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)
\(A\ge\dfrac{7\left(x+y\right)^2}{16xy}+\dfrac{\left(x+y\right)^2}{16xy}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}\)
\(A\ge\dfrac{7.4xy}{16xy}+3\sqrt[3]{\dfrac{\left(x+y\right)^2xy}{16.4.xy\left(x+y\right)^2}}=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(x=y\)
\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)
\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)
Dấu "=" xảy ra khi \(x=y=1\)
\(A=\dfrac{x^2+y^2}{xy}+\dfrac{xy}{x^2+y^2}=\dfrac{x^2+y^2}{4xy}+\dfrac{xy}{x^2+y^2}+\dfrac{3\left(x^2+y^2\right)}{4xy}\)
\(A\ge2\sqrt{\dfrac{\left(x^2+y^2\right)xy}{4xy\left(x^2+y^2\right)}}+\dfrac{3.2xy}{4xy}=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(x=y\)
\(C=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{6xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{6xy}{\left(x+y\right)^2}-4\)
\(C=\dfrac{3\left(x+y\right)^2}{8xy}+\dfrac{6xy}{\left(x+y\right)^2}+\dfrac{5\left(x+y\right)^2}{8xy}-4\)
\(C\ge2\sqrt{\dfrac{18xy\left(x+y\right)^2}{8xy\left(x+y\right)^2}}+\dfrac{5.4xy}{8xy}-4=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y\)
\(\dfrac{x^3}{4\left(y+2\right)}+\dfrac{x\left(y+2\right)}{16}\ge\dfrac{x^2}{4}\) ; \(\dfrac{y^3}{4\left(x+2\right)}+\dfrac{y\left(x+2\right)}{16}\ge\dfrac{y^2}{4}\)
\(\Rightarrow Q+\dfrac{2xy+2x+2y}{16}\ge\dfrac{x^2+y^2}{4}\ge\dfrac{\left(x+y\right)^2}{8}\)
\(\Rightarrow Q\ge\dfrac{\left(x+y\right)^2-\left(x+y\right)}{8}-\dfrac{1}{2}=\dfrac{\left(x+y-4\right)^2+7\left(x+y\right)-16}{8}-\dfrac{1}{2}\)
\(\Rightarrow Q\ge\dfrac{7\left(x+y\right)-16}{8}-\dfrac{1}{2}\ge\dfrac{14\sqrt{xy}-16}{8}-\dfrac{1}{2}=1\)
\(Q_{min}=1\) khi \(x=y=2\)
\(xy\ge2\left(y-1\right)\ge0\Rightarrow x\ge\dfrac{2\left(y-1\right)}{y}\ge0\)
\(\Rightarrow M\ge\dfrac{\dfrac{4\left(y-1\right)^2}{y^2}+4}{y^2+1}=4.\dfrac{\left(y-1\right)^2+y^2}{y^2\left(y^2+1\right)}\)
\(\dfrac{M}{4}\ge\dfrac{2y^2-2y+1}{y^4+y^2}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{\left(2-y\right)\left(y^3+2y^2-3y+2\right)}{4\left(y^4+y^2\right)}+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(\Rightarrow M\ge1\)
Dấu "=" xảy ra khi \(y=2;x=1\)
Ta thấy
72
=
2
3
.
3
2
72=2
3
.3
2
nên a, b có dạng
{
�
=
2
�
3
�
�
=
2
�
.
3
�
{
a=2
x
3
y
b=2
z
.3
t
với
�
,
�
,
�
,
�
∈
N
x,y,z,t∈N và
�
�
�
{
�
,
�
}
=
3
;
�
�
�
{
�
,
�
}
=
2
max{x,z}=3;max{y,t}=2.
Theo đề bài, ta có
2
�
.
3
�
+
2
�
.
3
�
=
42
2
x
.3
y
+2
z
.3
t
=42
⇔
2
�
−
1
.
3
�
−
1
+
2
�
−
1
3
�
−
1
=
7
⇔2
x−1
.3
y−1
+2
z−1
3
t−1
=7 (*), do đó
�
,
�
,
�
,
�
≥
1
x,y,z,t≥1
TH1:
�
≥
�
,
�
≤
�
x≥z,y≤t. Khi đó
�
=
3
,
�
=
2
x=3,t=2. (*) thành:
4.
3
�
−
1
+
3.
2
�
−
1
=
7
4.3
y−1
+3.2
z−1
=7
⇔
�
=
�
=
1
⇔y=z=1
Vậy
{
�
=
24
�
=
18
{
a=24
b=18
(nhận)
TH2: KMTQ thì giả sử
�
≥
�
,
�
≥
�
x≥z,y≥t. Khi đó
�
=
3
,
�
=
2
x=3,z=2. (*) thành
4.
3
�
−
1
+
2.
3
�
−
1
=
7
4.3
y−1
+2.3
t−1
=7, điều này là vô lí.
Vậy
(
�
,
�
)
=
(
24
,
18
)
(a,b)=(24,18) hay
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.