K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

6.6..6 - 6=?

16 tháng 3 2020

đặt \(a=x^2,b=y^2\left(a,b\ge0\right)\)thì \(P=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

Zì \(a,b\ge0\)nên

\(\left(a-b\right)\left(1-ab\right)=a-a^2b-b+ab^2\le a+ab^2=a\left(1+b^2\right)\le a\left(1+2b+b^2\right)=a\left(1+b\right)^2\)

Lại có \(\left(1+a\right)^2=\left(1-a\right)^2+4a\ge4a\)

=>\(P\le\frac{a\left(1+b\right)^2}{4a\left(1+b\right)^2}=\frac{1}{4}\)

dấu "=" xảy ra khi zà chỉ khi\(\hept{\begin{cases}a=1\\b=0\end{cases}=>\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)

zậy \(maxP=\frac{1}{4}khi\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)

16 tháng 3 2020

https://olm.vn/hoi-dap/detail/221163930084.html

cậu tìm link này nhé . mình đã trả lời câu này cho 1 bạn r . 

học giỏi

5 tháng 6 2017

Áp dụng BĐT AM-GM: \(\left(x^2-y^2\right)\left(1-x^2y^2\right)\le\frac{1}{4}\left(x^2-y^2+1-x^2y^2\right)^2=\frac{1}{4}\left(1-y^2\right)^2\left(1+x^2\right)^2\)

\(P\le\frac{1}{4}\frac{\left(1-y^2\right)^2}{\left(1+y^2\right)^2}\)

mà theo BĐT AM-GM:\(\left(1-y\right)\left(1+y\right)\le\frac{1}{4}\left(1-y+1+y\right)^2=1\)

\(\Rightarrow P\le\frac{1}{4}.\frac{1}{\left(1+y^2\right)^2}\le\frac{1}{4}.\frac{1}{1}=\frac{1}{4}\)

Dấu = xảy ra khi x=1;y=0 wait : có gì đó sai sai. số thực

NV
23 tháng 3 2022

\(\left(x^2;y^2\right)=\left(a;b\right)\Rightarrow P=\dfrac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

Ta có:

\(\left(a+b\right)\left(1+ab\right)-\left(a-b\right)\left(1-ab\right)=2b\left(a^2+1\right)\ge0;\forall a;b\ge0\)

\(\Rightarrow\left(a+b\right)\left(1+ab\right)\ge\left(a-b\right)\left(1-ab\right)\)

\(\Rightarrow P\le\dfrac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\le\dfrac{\left(a+b+1+ab\right)^2}{4\left(1+a\right)^2\left(1+b\right)^2}=\dfrac{1}{4}\)

\(P_{max}=\dfrac{1}{4}\) khi \(\left(a;b\right)=\left(1;0\right)\) hay \(\left(x;y\right)=\left(1;0\right)\)

24 tháng 3 2022

\(P=\dfrac{\left[\left(x-y\right)\left(1+xy\right)\right]\left[\left(x+y\right)\left(1-xy\right)\right]}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)

Áp dụng BĐT Cosi ta có:

\(\left(x-y\right)\left(1+xy\right)\le\dfrac{\left(x-y\right)^2+\left(1+xy\right)^2}{2}=\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{2}\\ \left(x+y\right)\left(1-xy\right)\le\dfrac{\left(x+y\right)^2+\left(1-xy\right)^2}{2}=\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{2}\)

\(\to P\le\dfrac{\left(1+x^2\right)^2\left(1+y^2\right)^2}{4\left(1+x^2\right)^2\left(1+y^2\right)^2}=\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

20 tháng 4 2020

Max=3,222222