Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Ta có:\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(A=x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}+4\)
\(A=x^2+\frac{1}{16x^2}+y^2+\frac{1}{16y^2}+\frac{15}{16}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+4\)
\(A\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}\cdot\frac{\left(\frac{1}{x}+\frac{1}{y}\right)^2}{2}+4\)
\(A\ge\frac{15}{32}\cdot\left(\frac{4}{x+y}\right)^2+5=\frac{15}{32}\cdot16+5=\frac{25}{2}\)
"="<=>x=y=1/2
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)
\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)
Áp dụng bđt AM - GM ta có :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)
\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)
Cộng vế với vế ta được :
\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Đức Hùng hình như áp dụng sai ( ngược dấu ) BĐT Bunhiacopxki rồi
đkxđ: \(x,y\ne0\)
Khai triển ra ta được\(\frac{x^2}{y}-\frac{x^2}{43}+\frac{y^2}{x}-\frac{y^2}{43}+x+y=0\)
<=> \(\frac{x^2+y^2}{y}+\frac{x^2+y^2}{x}-\frac{x^2+y^2}{43}=0\)
<=>\(\frac{1}{x}+\frac{1}{y}-\frac{1}{43}=0\)
<=> \(\frac{x+y}{xy}=\frac{1}{43}\)
<=>\(43\left(x+y\right)-xy=0\)\(\orbr{\begin{cases}\hept{\begin{cases}43-x=1849\\43-y=1\end{cases}}\\\hept{\begin{cases}43-x=1\\43-y=1849\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=42\\y=-1806\end{cases}}\\\hept{\begin{cases}x=-1806\\y=42\end{cases}}\end{cases}}\)
<=>\(\left(43-x\right)\left(43-y\right)=1849\)(tự phân tích nhân tử)
Tự giải phương trình ước số ra nghiệm (x,y)={(42;-1806);(-1806:42)}
Ta có:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)
\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 27/4 tại x = y = z = 1/2