\(x+y-2\left(\sqrt{x}+\sqrt{y}\right)+2\ge0\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 11 2022

\(x+y-2\left(\sqrt{x}+\sqrt{y}\right)+2=\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\ge0;\forall x;y>0\)

Đẳng thức xảy ra khi \(x=y=1\)

11 tháng 5 2017

Cách khác: 

\(\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)}{4}\ge2xy+\frac{x+y}{4}\)

\(=\frac{4xy+x+4xy+y}{4}=\frac{x\left(4y+1\right)+y\left(4x+1\right)}{4}\)

\(\ge\frac{4x\sqrt{y}+4y\sqrt{x}}{4}=x\sqrt{y}+y\sqrt{x}\)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)

11 tháng 5 2017

\(\frac{1}{2}\left(x+y\right)\left(x+y+\frac{1}{2}\right)=\frac{1}{2}\left(x+y\right)\left(x+\frac{1}{4}+y+\frac{1}{4}\right)\)

Áp dụng bất đẳng thức cauchy:

\(x+y\ge2\sqrt{xy}\)

\(x+\frac{1}{4}\ge2\sqrt{\frac{x}{4}}=\sqrt{x}\)

\(y+\frac{1}{4}\ge2\sqrt{\frac{y}{4}}=\sqrt{y}\)

do đó \(VT\ge\frac{1}{2}.2.\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=x\sqrt{y}+y\sqrt{x}\)(đpcm)

Dấu = xảy ra khi \(x=y=\frac{1}{4}\)

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

22 tháng 3 2021

Sử dụng bất đẳng thức Cô si cho hai số dương ta được

    a+b\ge2\sqrt{ab}a+b≥2ab    ;    b+c\ge2\sqrt{bc}b+c≥2bc   ;   c+a\ge2\sqrt{ca}c+a≥2ca

Nhân theo vế ba bất đẳng thức này ta được đpcm.

22 tháng 3 2021

mk nhầm bài dưới

22 tháng 3 2021

đk: \(y+3\ge0\)

BĐT cần chứng minh tương đương

\(BPT\Leftrightarrow1-2y-y^2\le\left(y+3\right)^2=y^2+6y+9\)

\(\Leftrightarrow2y^2+8y+8\ge0\)

\(\Leftrightarrow2\left(y+2\right)^2\ge0\left(\forall y\right)\)

Dấu "=" xảy ra khi: \(y+2=0\Rightarrow y=-2\)

19 tháng 6 2015

+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)

\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)

\(\Rightarrow xy^9\le3^9\)

+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)

\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)

Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)

x + 25 = 64

x         = 64 - 25

x         = 39

Vậy x = 39

26 tháng 10 2019

dễ thấy với điệu kiện đề bài thì xy(\(\sqrt{x}+\sqrt{y}-2.\))\(\ge0\)

 Vì x;y có vai trò ngang nhau nên giả sử x\(\ge y\)

đặt \(x^2=a,y^2=b;\sqrt{x}-1=m;\sqrt{y-1}=n\)=> am+bn= \(x^2\left(\sqrt{x}-1\right)+y^2\left(\sqrt{y}-1\right)\)

thì ta có \(a\ge b;m\ge n\)

=> (a-b)(m-n) \(\ge0< =>am+bn\ge an+bm< =>2am+2bn\ge\left(a+b\right)\left(m+m\right)\)

<=>\(am+bn\ge\frac{\left(a+b\right)\left(m+n\right)}{2}=\frac{\left(x^2+y^2\right)\left(\sqrt{x}-1+\sqrt{y}-1\right)}{2}\ge0\)

hay am+bn\(\ge0\)

vậy vế trái luôn lớn hơn bằng 0

dấu"="  khi \(\sqrt{x}+\sqrt{y}-2=0\)