K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

Áp dụng bất đẳng thức Cosi, ta có : 

\(53=2x+3y\ge2\sqrt{2x.3y}=2\sqrt{6}.\sqrt{xy}\Rightarrow xy\le\left(\frac{53}{2\sqrt{6}}\right)^2\)

Do đó : \(P=\sqrt{xy+4}\le\sqrt{\left(\frac{53}{2\sqrt{6}}\right)^2+4}=\sqrt{\frac{2905}{24}}\)

Vậy : Max \(P=\sqrt{\frac{2905}{24}}\Leftrightarrow\left(x;y\right)=\left(\frac{53}{4};\frac{53}{6}\right)\)

26 tháng 12 2019

We have:

\(P=\Sigma_{cyc}\sqrt{2x+yz}\le\sqrt{3\left[2\left(x+y+z\right)+\Sigma_{cyc}xy\right]}\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=4\)

Sign '=' happen when \(x=y=z=\frac{2}{3}\)

20 tháng 9 2019

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

23 tháng 9 2019

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

DD
22 tháng 5 2021

\(P=2x-3\sqrt{xy}+y=2x-3\sqrt{xy}+y+\left(-x-\sqrt{xy}+4y-4\sqrt{y}+16\right)\)

\(=x-4\sqrt{xy}+5y-4\sqrt{y}+16\)

\(=\left(\sqrt{x}-2\sqrt{y}\right)^2+\left(\sqrt{y}-2\right)^2+12\ge12\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\sqrt{x}=2\sqrt{y}\\\sqrt{y}-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\).

Với \(x=16,y=4\)thỏa mãn giả thiết. 

Vậy \(minP=12\)

22 tháng 5 2021

đề gì vậy zời

21 tháng 3 2019

??????????????????????????

21 tháng 3 2019

đặt 2x+3=a

\(y\sqrt{y}+y=a\sqrt{a}+a\)

=>\(\left(\sqrt{y}-\sqrt{a}\right)\left(y+\sqrt{ay}+a+\sqrt{a}+\sqrt{y}\right)=0\)

=>\(\sqrt{y}=\sqrt{a}\Rightarrow y=2x+3\)

thay vào Q tìm min là xong