≥3y

tìm Min A=\(\frac{4x^2+9y^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Đặt \(y=tx\left(t>0\right)\) thì ta có:

\(\left\{{}\begin{matrix}x\ge3tx\\A=\dfrac{4x^2+9t^2x^2}{tx^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t\le\dfrac{1}{3}\\A=\dfrac{4+9t^2}{t}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{4}{t}+9t=\left(\dfrac{1}{t}+9t\right)+\dfrac{3}{t}\ge6+9=15\)

Dấu = xảy ra khi \(t=\dfrac{1}{3}\) hay \(x=3y\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

24 tháng 5 2019

\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{54}{6xy}\)

Đặt \(\left\{{}\begin{matrix}2x=a\\3y=b\end{matrix}\right.\Rightarrow A=\frac{4}{a^2+b^2}+\frac{54}{ab}\)

\(A=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)

\(A=4\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{52}{ab}\)

\(\ge\frac{16}{\left(a+b\right)^2}+\frac{52}{\frac{\left(a+b\right)^2}{4}}\ge4+52=56\)

\("="\Leftrightarrow a=b\Leftrightarrow2x=3y\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

NV
24 tháng 5 2019

\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52}{\frac{\left(2x+3y\right)^2}{4}}\)

\(A\ge\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}\ge\frac{16}{4}+\frac{208}{4}=56\)

\(\Rightarrow A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

21 tháng 3 2019

\(A=4.\frac{x}{y}+9.\frac{y}{x}\).Đặt \(\frac{x}{y}=t\left(t\ge3\right)\)

\(A=\left(t+\frac{9}{t}\right)+3t\ge2\sqrt{t.\frac{9}{t}}+3t=6+3t\ge6+3.3=15\) (Làm tắt tí nha)

Dấu "=" xảy ra khi t = 3.Tức là x = 3y

Vậy ...