K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2015

A = (2x - 1)(3x2 - 5x + 6)

= 6x3 - 10x2 + 12x - 3x2 + 5x - 6

= 6x3 - 13x2 + 17x - 6

Hệ số của x2 là - 13

(x-y)^2=(x+y)^2-4xy

=10^2-4*30

=100-120=-20

=>Vô lý

16 tháng 9 2016

y=14 day ban a k nhe

16 tháng 9 2016

Theo đề

Ta có:

y = 14

nha bn

25 tháng 6 2017

1,Ta có :

x+y=7 =>\(\left(x+y\right)^2=7^2=49\)=> x^2+y^2+2xy=49

xy=12=> 2xy =24

=> x^2+y^2 +2xy-2xy =49-24=25=>x^2+y^2=25

=> x^2+y^2-2xy=25-24=1

=> (x-y)^2=1

=> Ix-yI=1

bài 2 mai giải tiếp nhé :))

29 tháng 5 2023

a.

Giả sử trong hai số x,y có một số chẵn; vai trò x,y như nhau; không mất tính tổng quát giả sử x chẵn ta có \(\left(xy\right)⋮2\)

Mà \(\left(x^2+y^2+10\right)⋮xy\)  nên \(\left(x^2+y^2+10\right)⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)

Ta có \(xy⋮4\)

Do đó \(\left(x^2+y^2+10\right)⋮4\).

Mà \(x^2⋮4,y^2⋮4\)  nên \(10⋮4\)  (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số lẻ.

Đặt \(d=ƯCLN\left(x,y\right)\)

Ta có: \(x=da,b=db\) với a, b, d \(\in N\)* và \(ƯCLN\left(a,b\right)=1\)

Có: \(\left(d^2a^2+d^2b^2+10\right)⋮\left(d^2ab\right)\Rightarrow\left(d^2a^2+d^2b^2+10\right)⋮d^2\Rightarrow10⋮d^2\Rightarrow d=1\)

Vậy \(ƯCLN\left(x,y\right)=1\)

b. Theo đề suy ra \(kxy=x^2+y^2+10\)

Vì x,y là số lẻ nên \(\left(x+1\right)\left(x-1\right)⋮4;\left(y+1\right)\left(y-1\right)⋮4\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)⋮4\\\left(y^2-1\right)⋮4\end{matrix}\right.\)

Có: \(x^2+y^2+10=x^2-1+y^2-1+12\) chia hết cho 4 nên \(kxy⋮4\)

Mà ƯCLN \(\left(xy,4\right)=1\Rightarrow k⋮4\)

Giả sử trong 2 số x,y có một số chia hết cho 3; vai trò của x, y là như nhau, không mất tính tổng quát giả sử \(x⋮3\) . Ta có \(\left(xy\right)⋮3\)

Mà \(\left(x^2+y^2+10\right)⋮\left(xy\right)\)

Nên \(\left(x^2+y^2+10\right)⋮3\)  \(\Rightarrow\left(y^2+10\right)⋮3\Rightarrow\left(y^2+1\right)⋮3\Rightarrow\) \(y^2\) chia cho 3 dư 2 (Điều này vô lý)

=> Giả sử trên là sai. Vậy x,y là hai số không chia hết cho 3.

\(\RightarrowƯCLN\left(xy,3\right)=1\)\(x^2\) và \(y^2\) chia cho 3 dư 1.

Do đó \(\left(x^2+y^2+10\right)⋮3\)  nên \(kxy⋮3\)  mà \(ƯCLN\left(xy,3\right)=1\Rightarrow k⋮3,k⋮4\)

\(ƯCLN\left(3,4\right)=1.3.4=12\Rightarrow k⋮12\)

Mà \(k\in N\)* nên \(k\ge12\)

Ta có \(x+y=10=>\left(x+y\right)^2=10^2=100\)

\(=>x^2+2xy+y^2=100\)

Mà : \(xy=21\)

\(=>x^2+y^2+2.21=100\)

\(=>x^2+y^2=58\)

\(=>x^2-2xy+y^2=\left(x-y\right)^2\)

\(=>58-2.21=\left(x-y\right)^2\)

\(=>16=\left(x-y\right)^2\)

\(=>\sqrt{16}=x-y\)

\(=>x-y=4\)

Cấm ai chép nha

15 tháng 6 2016

Naruto lục đạo bạn thiếu 1 trường hợp khi tách căn bậc 2

3 tháng 9 2017

Từ (x-y)2=10=>x2-2xy-y2=10(1)

Thay xy=2 vào (1) ta được:

x2-2*2+y2=10

=>x2+y2-4=10

=>x2+y2=14.

Vậy x2+y2=14 với  (x-y)2=10 và xy=2.