Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)
Câu b :
\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)
\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)
Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)

Vì x>0;y>0 nên theo bất đẳng thức Cô-Si:
\(x^2+y^2\ge2\sqrt{x^2.y^2}=2xy\)
\(=>M=\frac{x^2+y^2}{xy}\ge\frac{2xy}{xy}=2\)
Dấu "=" xảy ra <=> x=y
Vậy MinM=2 khi x=y

\(C=\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}=\frac{8}{9}.\frac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\frac{\left(x+y+2\right)^2}{9\left(xy+2x+2y\right)}+\frac{xy+2x+2y}{\left(x+y+2\right)^2}\)
\(C\ge\frac{4}{9}.\frac{2x^2+2y^2+4xy+8x+8x+8}{xy+2x+2y}+2\sqrt{\frac{\left(x+y+2\right)^2\left(xy+2x+2y\right)}{9\left(xy+2x+2y\right)\left(x+y+2\right)^2}}\)
\(C\ge\frac{4}{9}.\frac{\left(x^2+y^2\right)+\left(x^2+4\right)+\left(y^2+4\right)+4xy+8x+8y}{xy+2x+2y}+\frac{2}{3}\)
\(C\ge\frac{4}{9}.\frac{2xy+4x+4y+4xy+8x+8y}{xy+2x+2y}+\frac{2}{3}\)
\(C\ge\frac{4}{9}.\frac{6\left(xy+2x+2y\right)}{xy+2x+2y}+\frac{2}{3}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
\(C_{min}=\frac{10}{3}\) khi \(x=y=2\)
Ta có:
\(S=\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)
\(=\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}+2\)
\(\ge2\sqrt{x^2y^2\cdot\frac{1}{256x^2y^2}}+\frac{255}{256\left[\frac{\left(x+y\right)^2}{4}\right]^2}+2\)
\(=2\cdot\frac{1}{16}+\frac{255}{256\cdot\frac{1}{16}}+2=\frac{289}{16}\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)