K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

1. Vì a,d>0 nên ta có (a-b)>=0 tương đương a^2 +b^2 >= 2ab rồi chuyển ad xong từng phân thức rồi chia là ra đpcm

18 tháng 9 2017

Cau 1: Ta có: 
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7 
=(x-3)^2 +2(y-1)^2 +7 >+ 7 
=> minA= 7 <=> x=3 và y=1

18 tháng 9 2017

câu 1 đâu có y

14 tháng 3 2017

\(2.\) Bạn nghiêm túc gửi câu hỏi nhé!. Mình có lời giải rồi

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)

28 tháng 11 2017

B1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)}+\frac{1}{xy}\)

\(=\frac{1}{\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)}+\frac{3}{3xy}\)

\(=\frac{1}{1-3xy}+\frac{\sqrt{3^2}}{3xy}\ge\frac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=\left(1+\sqrt{3}\right)^2\)

29 tháng 11 2017

Dấu "=" xảy ra khi nào vậy ?

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

12 tháng 5 2019

b, có thể dùng bunhiacopxki nếu bn k bt bunhiacopxki  thì thay 1=x+y+z r sử dụng bđt côsi chính là câu a đấy  

12 tháng 5 2019

Giải hộ mình được không ạ ! Mình cảm ơn nhiều

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

21 tháng 1 2019

Ta có:

\(P=\frac{a^2}{x}+\frac{b^2}{y}\)

\(=\frac{a^2\left(x+y\right)}{x}+\frac{b^2\left(x+y\right)}{y}\)

\(=a^2+\frac{a^2y}{x}+b^2+\frac{b^2x}{y}\)

\(=a^2+b^2+\left(\frac{a^2y}{x}+\frac{b^2x}{y}\right)\)

Do \(\frac{a^2y}{x},\frac{b^2x}{y}\)có tích không đổi nên tổng chúng nhỏ nhất.

\(\Leftrightarrow\frac{a^2y}{x}=\frac{b^2x}{y}\)

\(\Leftrightarrow a^2y^2=b^2x^2\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow x=\frac{a}{a+b}\)

\(\Leftrightarrow y=\frac{b}{a+b}\)

Vậy \(P_{MIN}=\left(a+b\right)^2\Leftrightarrow x=\frac{a}{a+b},y=\frac{b}{a+b}\)

21 tháng 1 2019

Áp dụng BĐT Cauchy-schwarz ta có:

\(R=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

=> x=...

     y=...

KL:.....................

Forever Miss You ở đâu có cái tích ko đổi thì tổngnhỏ nhất hay thế?

Gửi link cho a đi~~