\(\in\) N \(|\) 0<x<10 và A
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 9 2020

\(X=\left\{1;2;3;4;5;6;7;8;9\right\}\)

\(A\cap B=\left\{4;6;9\right\}\Rightarrow\left\{{}\begin{matrix}\left\{4;6;9\right\}\subset A\\\left\{4;6;9\right\}\subset B\end{matrix}\right.\)

\(A\cup\left\{3;4;5\right\}=\left\{1;3;4;5;6;8;9\right\}\Rightarrow\left\{1;4;6;8;9\right\}\subset A\)

\(B\cup\left\{4;8\right\}=\left\{2;3;4;5;6;7;8;9\right\}\Rightarrow\left\{2;3;4;5;6;7;9\right\}\subset B\)

Nếu \(\left[{}\begin{matrix}1\in B\\8\in B\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\in A\cap B\\8\in A\cap B\end{matrix}\right.\) (ktm)

\(\Rightarrow\left\{{}\begin{matrix}1\notin B\\8\notin B\end{matrix}\right.\) \(\Rightarrow B=\left\{2;3;4;5;6;7;9\right\}\)

\(A=\left\{1;4;6;8;9\right\}\)

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:

a)

\(A\cap B=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)

\(B\cap C=\left \{ x\in\mathbb{R}|4\leq x< 6 \right \}\)

\(A\cap C=\left \{ x\in\mathbb{R}|2\leq x\leq 5 \right \}\)

\(A\cup C=\left \{ x\in\mathbb{R}|1\leq x< 6 \right \}\)

\(A\setminus (B\cup C)=A\setminus \left \{ x\in\mathbb{R}|2\leq x\leq 7 \right \}=\left \{ x\in\mathbb{R}|1\leq x <2 \right \}\)

b)

Ta có: \(A\cap B\cap C=\left \{ x\in\mathbb{R}|4\leq x\leq 5 \right \}\)

Như vậy để \(D\subset A\cap B\cap C\) thì \(4\leq a,b\leq 5\)\(a\leq b\)

31 tháng 8 2017

bạn giải dùm mình 2 câu các tập hợp số nữa đi. cám ơn trc nha. mai mình nộp rồi. bạn tranh thủ dùm

15 tháng 9 2019

Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh

1: A={-3;-2;-1;0;1;2;3}

B={2;-2;4;-4}

A giao B={2;-2}

A hợp B={-3;-2;-1;0;1;2;3;4;-4}

2: x thuộc A giao B

=>\(x=\left\{2;-2\right\}\)

NV
27 tháng 9 2020

\(11-3x>0\Leftrightarrow x< \frac{11}{3}\Rightarrow A=\left\{0;1;2;3\right\}\)

\(B=\left\{-3;-2;-1;0;1;2;3\right\}\)

\(A\cup B=B=...\)

\(A\cap B=A=...\)

\(C_BA=\left\{-3;-2;-1\right\}\)

\(A\backslash B=\varnothing\)

\(B\backslash A=\left\{-3;-2;-1\right\}\)

\(X=A;\left\{-3;0;1;2;3\right\};\left\{-2;0;1;2;3\right\};\left\{-1;0;1;2;3\right\}\) ; \(\left\{-3;-2;0;1;2;3\right\};\left\{-3;-1;0;1;2;3\right\};\left\{-2;-1;0;1;2;3\right\};B\)

2 tháng 4 2017

Các quan hệ đúng: a), c), e)

17 tháng 7 2017

A;C;E THEO TUI NGHĨ KO BIẾT ĐÚNG KO NHA !!

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1