\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)  khi đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{2+10y}{12+4x}=\frac{2.\left(1+5y\right)}{2.\left(6+2x\right)}=\frac{1+5y}{6+2x}\)

=>5x=6+2x 

=>3x=6 

=>x=2 

*x=2 => \(\frac{1+3y}{12}=\frac{1+5y}{10}\Rightarrow10+30y=12+60y\Rightarrow30y=-2\Rightarrow y=-\frac{1}{15}\)

=>x+y=29/15

26 tháng 2 2017

2) \(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)

Ta có: \(\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{\left(1+5y-1+7y\right)}{5x-4x}=\frac{-2y}{x}\)

\(\Rightarrow\frac{1+5y}{5}=-2y\)

\(\Rightarrow y=-\frac{1}{15}\)

\(\Rightarrow x=2\)

\(\Rightarrow x+y=\frac{-1}{15}+2=\frac{29}{15}\)

26 tháng 2 2017

mơn nhìu nhé :))

3 tháng 10 2016

b) Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+5y+1+7y}{12+5x+4x}=\frac{3+15y}{12+5x+4x}=\frac{3\left(1+5y\right)}{2.3.2+5x+4x}=\frac{1+5y}{4+9x}=\frac{1+5y}{5x}\)<=> 4 + 9x = 5x

....

4 tháng 10 2016

a/ Từ giả thiêt ta có \(\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{40}\). Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\)

\(\Rightarrow\begin{cases}x=15k\\y=20k\\z=40k\end{cases}\)

Theo đề bài : \(xy=1200\Leftrightarrow15k.20k=1200\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)

Tới đây dễ rồi nhé :)

b/ \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\Leftrightarrow\frac{1+5y}{5}=\frac{1+7y}{4}\Leftrightarrow\frac{7+35y}{35}=\frac{5+35y}{20}=\frac{7+35y-5-35y}{35-20}=\frac{2}{15}\)

\(\Rightarrow y=-\frac{1}{15}\)

Thay y vào \(\frac{1+3y}{12}=\frac{1+5y}{5x}\) tìm được x = 2

ko ghi lại đề

\(\Rightarrow\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1+7y}{\left(5x-4x\right)}=-\frac{2y}{x}\)

\(\Rightarrow\frac{\left(1+5y\right)}{5}=-2y\)

Ta đc \(y=\frac{-1}{15}\)

\(\Rightarrow x=2\)

23 tháng 3 2020

a) Ta có:

\(\frac{x}{3}=\frac{y}{7}\)\(x.y=84.\)

Đặt \(\frac{x}{3}=\frac{y}{7}=k.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)

+ Có: \(x.y=84\)

\(\Rightarrow3k.7k=84\)

\(\Rightarrow21.k^2=84\)

\(\Rightarrow k^2=84:21\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k^2=\left(\pm2\right)^2\)

\(\Rightarrow k=\pm2.\)

+ TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)

+ TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)

Chúc bạn học tốt!

9 tháng 7 2018

a ) 

Ta có : 

\(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)

\(\Rightarrow\frac{4\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)

\(\Rightarrow\frac{4+20y}{20x}=\frac{5+35y}{20x}\)

\(\Rightarrow4+20y=5+35y\)

\(\Rightarrow35y-20y=4-5\)

\(\Rightarrow15y=4-5\)

\(\Rightarrow15y=-1\)

\(\Rightarrow y=-\frac{1}{15}\)

Lại có : 

\(\frac{1+3y}{12}=\frac{1+5y}{5x}\)

\(\Rightarrow\frac{1+3.-\frac{1}{15}}{12}=\frac{1+5.-\frac{1}{15}}{5x}\)

\(\Rightarrow\frac{1-\frac{1}{5}}{12}=\frac{1-\frac{1}{3}}{5x}\)

\(\Rightarrow\frac{4}{5}:12=\frac{4}{3}:5x\)

\(\Rightarrow\frac{1}{15}=\frac{4}{3}:5x\)

\(\Rightarrow5x=\frac{4}{3}:\frac{1}{15}\)

\(\Rightarrow5x=20\)

\(\Rightarrow x=4\)

Vậy \(x=4;y=-\frac{1}{15}\)

9 tháng 7 2018

a) Xét \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)

\(\Rightarrow\frac{4x\left(1+5y\right)}{20x}=\frac{5\left(1+7y\right)}{20x}\)

\(\Rightarrow4x\left(1+5y\right)=5\left(1+7y\right)\)

\(\Rightarrow4+20y=5+35y\)

\(\Rightarrow35y-20y=4-5\)

\(\Rightarrow15y=-1\)

\(\Rightarrow y=\frac{-1}{15}\)

Xét \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)

\(\Rightarrow\frac{1+3.\frac{-1}{15}}{12}=\frac{1+5.\frac{-1}{15}}{5x}\)

\(\Rightarrow\frac{1+\frac{-1}{5}}{12}=\frac{1+\frac{-1}{3}}{5x}\)

\(\Rightarrow\frac{\frac{4}{5}}{12}=\frac{\frac{2}{3}}{5x}\)

\(\Rightarrow\frac{4}{5}:12=\frac{2}{3}:5x\)

\(\Rightarrow\frac{1}{15}=\frac{2}{3}:5x\)

\(\Rightarrow5x=\frac{2}{3}:\frac{1}{15}\)

\(\Rightarrow5x=\frac{30}{3}\)

\(\Rightarrow x=\frac{30}{3}:5\)

\(\Rightarrow x=\frac{30}{3}.\frac{1}{5}\)

\(\Rightarrow x=2\)

Vậy x = 2 ; y = \(\frac{-1}{15}\)

19 tháng 12 2017

Tìm x,y

1+3y/12 =1+5y/5x =1+7y/4x 

Giải:Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+5y-1-7y}{x}=\frac{-2y}{x}\)

\(\Rightarrow x+3xy=-24y\Rightarrow x+3xy+24y=0\Rightarrow x\left(3y+1\right)+8\left(3y+1\right)=8\)

\(\Rightarrow\left(x+8\right)\left(3y+1\right)=8\)

Đến đây đơn giản rồi.Bạn tự làm nha.....................................

20 tháng 12 2017

Ta có:1+3y/12=1+5y/5x=1+7y/4z=1+3y+1+7y/12+4x=2+10y

=> 1+5y/5x=2+10y/12+4x=>2+10y/10x=2+10y/12+4x

=>10x=12+4x

6x=12

=>x=12

bạn thấy x để tìm ý nhé

a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)

\(\Leftrightarrow141k^2=141\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow k=\pm1\)

TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)

TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy.....

9 tháng 1 2020

a)

Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)

\(\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{4}=1\Rightarrow y=4.1=4\)

\(\frac{z}{5}=1\Rightarrow z=5.1=5\)

Vậy x = 3

y=4

z=5

8 tháng 3 2020

https://hoc24.vn/hoi-dap/question/175291.html

Bn vô link đó tham khảo