Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x và y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)
=>\(2y_1=5y_2\)
hay \(\dfrac{y_1}{5}=\dfrac{y_2}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{y_1}{5}=\dfrac{y_2}{2}=\dfrac{3y_1+4y_2}{3\cdot5+4\cdot2}=\dfrac{46}{23}=2\)
Do đó: \(y_1=10;y_2=4\)
\(k=y_1\cdot x_1=10\cdot2=20\)
=>y=20/x
a) Ta co cong thuc:x1/y1=x2/y2
<=>x1.y1=x2.y2
<=>3.y1=2.y2(*)
vi y1+y2=15 nên :
y1=15 - y2
thay vao (*) ta có :3 .(15-y2)=2.y2
<=> 45-3.y2=2.y2<=>
5.y2=45
=>y2=9
=> y1=6
a) Vì x1 và x2 là 2 giá trị tương ứng của x nên
Ta có \(\dfrac{x1}{x2}\)= \(\dfrac{2}{3}\)
=> \(\dfrac{y1}{x2}\)= \(\dfrac{13}{5}.2=\dfrac{26}{5}\)
=> x1.y1=\(\dfrac{26}{5}.3=\dfrac{78}{5}\)
=>y1=\(\dfrac{78}{5.x1}\)
=>y=\(\dfrac{78}{5x}\)
b) Ta có y = \(\dfrac{78}{5}:x\)
Thay y = -78 Ta có
-78 =
\(a,2x_1=5y_1\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}=\frac{2x_1-3y_1}{10-6}=\frac{12}{4}=3\)
Vậy \(x_1=15;y_1=6\)
\(b,\) Ta có: \(x_1.y_1=x_2.y_2\)
Mà: \(x_1=2x_2;y_210\Rightarrow2x_2y_1=x_2.10\) hay \(y_1=\frac{10x_2}{2x_2}=5\)
Vậy \(y_1=5\)
a) Vì x và y là hai đại lượng tỉ lệ thuận, nên :
y = ax (a là hệ số tỉ lệ, a khác 0)
Khi đó : \(\begin{cases} y_1 = ax_1\\ y_2 = ax_2 \end{cases}\)
Suy ra \(y_1+y_2=a\left(x_1+x_2\right)\) => -10 = a.2 => a = -5
Vậy : y = -5x
b) y = 5
Ta có:\(\dfrac{y1}{y2}=\dfrac{x_2}{x_1}=\dfrac{5}{2}=>\dfrac{y1}{5}=\dfrac{y2}{2}\)
Hay \(\dfrac{3.y1}{3.5}=\dfrac{4.y2}{4.2}=\dfrac{3y1+4y2}{15+8}=\dfrac{46}{23}=2\)
Do đó : y1 = 5.2 = 10
hay x1y1=2.10=20
Vậy xy = 20
Hay y=\(\dfrac{20}{x}\)
x và y tỉ lệ nghịch nên y=a/x (1)
khi đó: y1=a/x1=a/2
y2=a/x2=a/5
<=> 3.a/2 + 4.a/5=46
<=>(15a+8a)/10=46
->23a=460 => a=20
thế vào (1) y=20/x