Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x,y là hai đại lượng tỉ lệ thuận
=>\(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{4}=\dfrac{y_1}{16}\)
=>\(\dfrac{x_1}{1}=\dfrac{y_1}{4}\)
mà \(3x_1+2y_1=22\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{1}=\dfrac{y_1}{4}=\dfrac{3x_1+2y_1}{3\cdot1+2\cdot4}=\dfrac{22}{11}=2\)
=>\(x_1=2\cdot1=2\)
=>Chọn D
a: x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{2}=\dfrac{-3}{4}:\dfrac{1}{7}=-\dfrac{3}{4}\cdot7=-\dfrac{21}{4}\)
=>\(x_1=-\dfrac{21}{4}\cdot2=-\dfrac{21}{2}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
=>\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)
mà \(y_1-x_1=-2\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=-\dfrac{2}{7}\)
=>\(x_1=\dfrac{-2}{7}\cdot\left(-4\right)=\dfrac{8}{7};y_1=\dfrac{-2}{7}\cdot3=-\dfrac{6}{7}\)