Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo bài ra ta có:
$xy=a$
$yz=b$
$\Rightarrow \frac{xy}{yz}=\frac{a}{b}$ hay $\frac{x}{z}=\frac{a}{b}$
$\Rightarrow x=\frac{a}{b}.z$
Vậy $x$ tỉ lệ thuận với $z$ theo hệ số tỉ lệ $\frac{a}{b}$
x=2y
=>y=x/2
y=-5z
=>x/2=-5z
=>x=-10z
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k=-10
y tỉ lệ nghịch với z theo hệ số tỉ lệ h
=> \(y=\frac{h}{z}\)
z tỉ lệ thuận với x theo hệ số tỉ lệ k
=> z=kx
\(y=\frac{h}{z}\) = \(\frac{h}{kx}\) = \(\frac{h}{k}\times\frac{1}{x}\) =\(\frac{\frac{h}{k}}{x}\)
yx=\(\frac{h}{k}\)
vậy y tỉ lệ nghịch với x
x và z là hai đại lượng tỉ lệ thuận với hệ số tỉ lệ là k=a/b
a: x tỉ lệ nghịch với y theo hệ số tỉ lệ k nên xy=k
y tỉ lệ thuận với z theo hệ số tỉ lệ a nên y=az
=>\(az=\dfrac{k}{x}\)
=>azx=k
=>zx=k/a
Vậy: z tỉ lệ nghịch với x theo hệ số k/a
b: x tỉ lệ nghịch với y theo hệ số k nên xy=k
y tỉ lệ nghịch với z theo hệ số a nên yz=a
\(\Leftrightarrow\dfrac{k}{x}\cdot z=a\)
=>\(\dfrac{kx}{z}=a\)
=>x/z=k/a
\(\Leftrightarrow x=\dfrac{k}{a}\cdot z\)
Vậy: x tỉ lệ thuận với z theo hệ số k/a
c: x tỉ lệ thuận với y theo hệ số k nên x=ky
y tỉ lệ thuận với z theo hệ số a nên y=az
\(\Leftrightarrow az=\dfrac{x}{k}\)
=>x=akz
=>x tỉ lệ thuận với z theo hệ số ak