K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

B= \(4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+15\)

\(\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+15\ge15\)

=> GTNN của B là 15

2 tháng 7 2017

ai ,mình tích  lại

2 tháng 7 2017

2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2 
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y) 
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm 
dau = cay ra <=> x=y=z=1/3

11 tháng 8 2015

\(B=5x^2+2y^2+4xy-2x+4y+2020\)

\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)

\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)

\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)

11 tháng 8 2015

=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015

=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]

=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015

giá trị nhỏ nhất là 2015

26 tháng 12 2016

a=(2x+y)^2+(x-1)^2+(y+2)^2+2021-5=2016

Amin=2016

7 tháng 9 2021

\(x^2+4y^2-5x+10y-4xy+20\)

\(=x^2-4xy+4y^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}-\frac{25}{4}+20\)

\(=\left(x-2y\right)^2-2.\frac{5}{2}\left(x-2y\right)+\frac{25}{4}+\frac{55}{4}\)

\(=\left(x-2y-\frac{5}{2}\right)^2+\frac{55}{4}\)Thay x - 2y = 5 ta được : 

\(=\left(5-\frac{5}{2}\right)^2+\frac{55}{4}=20\)

7 tháng 9 2021

\(B=x^2-2xy-2x+2y+y^2\)

\(=x^2-2xy+y^2-2\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-1\right)\)Thay x = y + 1 => x - y = 1 ta được : 

\(=1-2=-1\)

19 tháng 4 2018

\(5x^2+2y^2-4xy-2x-4y+5=0\\ \Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(2x-y\right)^2+\left(x-1\right)^2+\left(y-2\right)^2=0\)

\(\left(2x-y\right)^2\ge0\forall x,y\in R \\ \left(x-1\right)^2\ge0\forall x\in R\\ \left(y-2\right)^2\ge0\forall y\in R\)

Nên dấu "=" xảy ra khi và chỉ khi \(\left(2x-y\right)^2=0\\ \left(x-1\right)^2=0\\ \left(y-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\2.1-2=0\left(thoảmãn\right)\end{matrix}\right.\)

Vậy cặp số (x;y) cần tìm là (1:2)

10 tháng 7 2017

a) x2 + 2y2 - 2xy + 8y + 7
= x2 - 2xy + y2 + y2 + 8y + 16 - 9
= (x - y)2 + (y + 4)2 - 9
GTNN của biểu thức trên là -9

b) 5x2 + y2 + 2xy - 12x - 18
= x2 + 2xy + y2 + 4x2 - 12x + 9 - 27
= (x + y)2 + (2x - 3)2 - 27
GTNN của biểu thức trên là -27

c) 3x2 + 4y2 + 4xy + 2x - 4y + 26
= 2x2 + 4xy + 2y2 + x2 + 2x + 1 + 2y2 - 4y + 2 + 23
= (\(\sqrt{2}\)x + \(\sqrt{2}\)y)2 + (x + 1)2 + 23
GTNN của biểu thức trên là 23

Câu d mình ko biết làm

10 tháng 7 2017

d) D= 5x^2+9y^2-12xy+24x-48y+82

\(=4x^2+9y^2+64-12xy+32x-48y+x^2-8x+16+2\)

\(=\left[\left(2x\right)^2+\left(3y\right)^2+8^2-2.2x.3y+2.2x.8-2.3y.8\right]+\left(x^2-2.x.4+4^2\right)+2\)

\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)

Vậy GTNN của D là 2 tại \(\hept{\begin{cases}\left(2x-3y+8\right)^2=0\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-3y+8=0\\x-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}}\)