K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

10 tháng 5 2022

Bài 1: -Sửa đề: a,b,c>0

-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Quay lại bài toán:

\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)

\(\Rightarrow3\left(ab+bc+ca\right)\le1\)

\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)

10 tháng 5 2022

Bài 2:

-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.

\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)

\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)

\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)

-Quay lại bài toán:

\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)

\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)

-Vậy \(P_{min}=1\)

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x^2-4x+3+11\)

\(=x^2-4x+4+8\)

\(=\left(x-2\right)^2+8\ge8\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-4x^2+4x+5\)

\(=-\left(4x^2-4x+1-6\right)\)

\(=-\left(2x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)