Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)\(\frac{x}{5}=\frac{-3}{y}\Rightarrow xy=-15\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 15) (1; -15) (-3; 5) (3; -5)
b)\(\frac{-11}{x}=\frac{y}{3}\Rightarrow xy=-33\)
Vậy ta có các cặp số (x, y) thỏa mãn là: (-1; 33) (1; -33) (3; -11) (-3; 11)
Bài 2: Ở đây mình vẫn chưa hiểu về cặp số nguyên
a) Để M là số nguyên thì x + 2 chia hết cho 3. Vậy ta có các số: x \(\in\){...; -5; -2; 1; 4; 7; 10; ...}
b) Để N là số nguyên thì 7 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{2;0;8;-6\right\}\)
Vậy \(x\in\left\{2;0;8;-6\right\}\)
c) Để D là số nguyên thì x + 1 chia hết cho x - 1 và x - 1\(\ne\)0 (hay x\(\ne\)1). Đặt tính chia (bạn tự đặt do mình không cách đặt tính chia trên olm) ta có:
(x + 1) : (x - 1) = 1 (dư 2)
Để D là số nguyên thì 2 chia hết cho x - 1\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)
a) để A thuộc Z thì x + 2 \(⋮\)3
=> x + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
=> x \(\in\){ -1 ; -3 ; 1 ; -5 }
Mấy bài còn lại tương tự
a) để A thuộc Z thì x + 2 ⋮3
=> x + 2 ∈Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
=> x ∈{ -1 ; -3 ; 1 ; -5 }
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
b.
\(\frac{7}{x-1}\in Z\)
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)\)
\(\Rightarrow x-1\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-6;0;2;8\right\}\)
c.
\(\frac{x+2}{x-1}\in Z\)
\(\Rightarrow x+2⋮x-1\)
\(\Rightarrow x-1+3⋮x-1\)
\(\Rightarrow3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(3\right)\)
\(\Rightarrow x-1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
\(a,\frac{x+3}{5}\in\Leftrightarrow x+3\in B5\Leftrightarrow x\in B5-3\)
\(b,\frac{7}{x-1}\in Z\Leftrightarrow x-1\inƯ7\Leftrightarrow x-1\in\left\{\pm1;\pm7\right\}\Leftrightarrow x\in\left\{-6;0;2;8\right\}\)
\(c,\frac{x+2}{x-1}\in Z\Leftrightarrow\frac{x-1+3}{x-1}\in Z\Leftrightarrow1+\frac{3}{x-1}\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)
\(\Leftrightarrow x-1\inƯ3\Leftrightarrow x-1\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-2;0;2;4\right\}\)
Cậu có chắc của lớp 6 không ???
Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)
Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)
Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)
Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)
=> 2a+1 thuộc ước của 2
.....
tự làm
Để x \(\in Z\), => \(\frac{2}{2a+1}\)là số nguyên
\(\Rightarrow2a+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2a\in\left\{-3;-2;0;1\right\}\)
\(\Rightarrow a\in\left\{-\frac{3}{2};-1;0;\frac{1}{2}\right\}\)
Do \(a\in Z\Rightarrow a\in\left\{-1;0\right\}\)