\(\dfrac{\sqrt{13-4\sqrt{3}}}{2}.Tính\)  A = \(\dfrac{\sqrt{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:
\(x=\frac{\sqrt{13-4\sqrt{3}}}{2}=\frac{\sqrt{13-2\sqrt{12}}}{2}=\frac{\sqrt{12+1-2\sqrt{12}}}{2}=\frac{\sqrt{(\sqrt{12}-1)^2}}{2}=\frac{\sqrt{12}-1}{2}\)

\(2A=1+\frac{7}{2\sqrt{x}-3}=1+\frac{7}{\sqrt{2\sqrt{12}-2}}\)

\(A=\frac{1}{2}+\frac{7}{2\sqrt{4\sqrt{3}-2}}\)

a: \(A=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}=10\)

b: \(B=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}=-2\sqrt{y}\)

c: \(C=\dfrac{\sqrt{3}-1}{\sqrt{6}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

Bài 1 :

Câu a : \(\sqrt{\dfrac{1,44}{3,61}}=\sqrt{\dfrac{144}{361}}=\dfrac{\sqrt{144}}{\sqrt{361}}=\dfrac{12}{19}\)

Câu b : \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{25}{900}}=\dfrac{\sqrt{25}}{\sqrt{900}}=\dfrac{5}{30}=\dfrac{1}{6}\)

Câu c : \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}.\sqrt{\dfrac{121}{46}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{121}}{36}=\dfrac{7}{6}.\dfrac{11}{6}=\dfrac{77}{36}\)

Câu d : \(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}=\sqrt{\dfrac{1}{121}.\dfrac{81}{25}}=\dfrac{1}{\sqrt{121}}.\dfrac{\sqrt{81}}{\sqrt{25}}=\dfrac{1}{11}.\dfrac{9}{5}=\dfrac{9}{55}\)

Câu e : \(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}=\sqrt{\dfrac{49}{36}.\dfrac{100}{49}.\dfrac{25}{9}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{100}}{\sqrt{49}}.\dfrac{\sqrt{25}}{\sqrt{9}}=\dfrac{7}{6}.\dfrac{10}{7}.\dfrac{5}{3}=\dfrac{25}{9}\)

Bài 2 :

Câu a : \(\dfrac{\sqrt{245}}{\sqrt{5}}=\sqrt{\dfrac{245}{5}}=\sqrt{49}=7\)

Câu b : \(\dfrac{\sqrt{3}}{\sqrt{75}}=\sqrt{\dfrac{3}{75}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)

Câu c : \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}=\sqrt{\dfrac{10,8}{0,3}}=\sqrt{\dfrac{108}{3}}=\sqrt{36}=6\)

Câu d : \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}=\sqrt{\dfrac{6,5}{58,5}}=\sqrt{\dfrac{65}{585}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)

28 tháng 6 2018

a/ ĐKXĐ: x>= 0 ; x khác 1

b/ \(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{8\sqrt{x}}{x-1}\right):\dfrac{4\sqrt{x}-8}{1-x}\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{8\sqrt{x}}{x-1}\right):\dfrac{8-4\sqrt{x}}{x-1}\)

\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{2}-1-8\sqrt{x}}{x-1}\cdot\dfrac{x-1}{8-4\sqrt{x}}\)

\(=\dfrac{-4\sqrt{x}}{x-1}\cdot\dfrac{x-1}{4\left(2-\sqrt{x}\right)}=\dfrac{-4\sqrt{x}}{4\left(2-\sqrt{x}\right)}=-\dfrac{\sqrt{x}}{2-\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

29 tháng 6 2018

Làm nốt bài 1 ::v

\(\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\dfrac{3+6\sqrt{3}}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}=\dfrac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{\sqrt{3}\left(\sqrt{3}+6\right)}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}=6-\dfrac{13}{\sqrt{3}+4}=\dfrac{11+6\sqrt{3}}{\sqrt{3}+4}\)

7 tháng 8 2017

\(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{5}-3}\)

\(=\dfrac{3-\sqrt{5}}{\sqrt{5}-3}\)

= - 1

\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}}{2}\)

\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}\)

\(=\dfrac{\sqrt{5}+1}{2}\)

\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)

\(=\dfrac{2\sqrt{2}+2}{\sqrt{3+2\sqrt{2}}}\)

\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

= 2

\(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)

\(=4+9+16+49\)

= 78

7 tháng 8 2017

\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x+\sqrt{xy}+y}\)

\(=\sqrt{x}-\sqrt{y}\)

\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)+\left(2-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}{\left(\sqrt{2}+\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2}-\sqrt{2-\sqrt{3}}\right)}\)

\(\left[-\text{tử}-\right]=\sqrt{2}\left(2+\sqrt{3}\right)-\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^2}+\sqrt{2}\left(2-\sqrt{3}\right)+\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)^2}\)

\(=4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(\left[-\text{mẫu}-\right]=2-\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}-\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)

\(=2-\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-3}\)

\(=2-\left(\sqrt{3}-1\right)+\left(\sqrt{3}+1\right)-1\)

= 3

Ta có:

\(\dfrac{4\sqrt{2}-\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{3}\)

\(=\dfrac{8-\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{3\sqrt{2}}\)

\(=\dfrac{8-\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{3\sqrt{2}}\)

\(=\dfrac{8-\left(\sqrt{3}+1\right)+\left(\sqrt{3}-1\right)}{3\sqrt{2}}=\dfrac{6}{3\sqrt{2}}=\sqrt{2}\)

\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{a}-\sqrt{2}\right)^2}{\left(\sqrt{a}-\sqrt{3}\right)^2}}\)

\(=\dfrac{\left|\sqrt{a}-\sqrt{2}\right|}{\left|\sqrt{a}-\sqrt{3}\right|}\)

7 tháng 10 2018

+) ta có : \(A=\sqrt{13+4\sqrt{10}}-\sqrt{13-4\sqrt{10}}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}-2\sqrt{2}+\sqrt{5}=2\sqrt{5}\) (sữa đề)

+) ta có : \(B=\sqrt{\dfrac{3-2\sqrt{2}}{17-12\sqrt{2}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(3-2\sqrt{2}\right)^2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)^2}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\dfrac{1}{\sqrt{2}-1}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\sqrt{2}+1+2-\sqrt{3}=3-\sqrt{3}+\sqrt{2}\) (sữa đề )

+) đk : \(x\ne-3\)

ta có : \(C=\dfrac{\sqrt{x^2+6x+9}}{x+3}=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)

\(\left[{}\begin{matrix}C=1\left(x>-3\right)\\C=-1\left(x< -3\right)\end{matrix}\right.\)

+) \(m\ge\dfrac{5}{2}\)

ta có : \(D=\sqrt{2m+4+6\sqrt{2m-5}}-\sqrt{2m-5}\)

\(=\sqrt{\left(\sqrt{2m-5}+3\right)^2}-\sqrt{2m-5}=\left|\sqrt{2m-5}+3\right|-\sqrt{2m-5}\)

\(\Leftrightarrow\left[{}\begin{matrix}C=3\left(m\ge7\right)\\C=-3-2\sqrt{2m-5}\left(\dfrac{5}{2}\le m\le7\right)\end{matrix}\right.\)

7 tháng 10 2018

Mysterious Person giúp mk nha

bài 1: giải các hệ phương trình 1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) x+y=9 2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\) \(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\) 3)\(2|x|-y=3\) \(|x|+y=3\) 4)\(2\left(x+y\right)+\sqrt{x+1}=4\) \(\left(x+y\right)-3\sqrt{x+1}=-5\) 5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\) \(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\) 6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\) \(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\) 7)...
Đọc tiếp

bài 1: giải các hệ phương trình

1)\(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\)

x+y=9

2) \(\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\)

\(\dfrac{x+5}{2}-\dfrac{y+7}{3}=-4\)

3)\(2|x|-y=3\)

\(|x|+y=3\)

4)\(2\left(x+y\right)+\sqrt{x+1}=4\)

\(\left(x+y\right)-3\sqrt{x+1}=-5\)

5) \(\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\)

\(\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\)

6)\(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=2\)

7) \(\dfrac{1}{x}+\dfrac{1}{y}=2\)

\(\dfrac{3}{x}-\dfrac{1}{y}=2\)

8)\(\dfrac{1}{x+2}+\dfrac{3}{2y-1}=4\)

\(\dfrac{4}{x+2}-\dfrac{1}{2y-1}=3\)

9)\(\dfrac{4}{x+y} +\dfrac{1}{y-1}=5\)

\(\dfrac{1}{x+y}-\dfrac{2}{y-1}=-1\)

10)\(\dfrac{7}{\sqrt{2x+3}}-\dfrac{4}{\sqrt{3}-y}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{2x+3}}+\dfrac{3}{\sqrt{3-y}}=\dfrac{13}{6}\)

11)\(\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\)

\(\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\)

12) \(\dfrac{7}{\sqrt{x}-7}-\dfrac{4}{\sqrt{y}+6}=\dfrac{5}{3}\)

\(\dfrac{5}{\sqrt{x}-7}+\dfrac{3}{\sqrt{y}+6}2\dfrac{1}{6}\)

13) \(3\sqrt{x-1}+2\sqrt{y}=13\)

\(2\sqrt{x-1}-\sqrt{y}=4\)

14) 6x + 6y = 5xy

\(\dfrac{4}{x}-\dfrac{3}{y}=1\)

1
24 tháng 2 2018

mọi người giúp mk với gianroi

câu 6 sai nha

sửa : \(\dfrac{1}{x}+\dfrac{3}{2y+1}=2\)

\(\dfrac{2}{x}+\dfrac{4}{2y+1}=3\)

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

Câu 1: 

a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\) 

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)

hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)

Câu 1: 

a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\) 

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)

hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)