Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có -3x+5y=33
=> 5y=33+3x
=> y=(33+3x)/5
thay y=(33+3x)/5 vào x/y=3/4 ta đc
x/y=3/4
x/(33+3x)/5=3/4
5x/(33+3x)=3/4
x=9
thay x=9 vào x/y=3/4 ta đc
x/y=3/4
9/y=3/4
y=12
Ta có:\(\frac{x}{y}=\frac{3}{4}\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)
(Áp dụng tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\hept{\begin{cases}x=3\cdot3=9\\y=3\cdot4=12\end{cases}}\)
1, 4x = 5y <=> 4x - 5y = 0 (1)
Mà: x -2y = -5 <=> 4x - 8y = -20 (2)
Trừ (1) cho (2) ta có: 4x - 5y - 4x + 8y = 0 - (-20)
<=> 3y = 20 <=> y = \(\frac{20}{3}\)
=> x =\(\frac{25}{3}\)
2, \(ad=bc\)\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(dpcm\right)\)
3, \(\frac{x^2}{6}=\frac{24}{25}\Leftrightarrow25x^2=24\times6\Leftrightarrow25x^2=144\Leftrightarrow x^2=\frac{144}{25}\Leftrightarrow\orbr{\begin{cases}x=-\frac{12}{5}\\x=\frac{12}{5}\end{cases}}\)
1)
4x=5y va x-2y=-5
ta co 4x=5y suy ra x/5=y/4
theo t/c cua ti le thuc ta co
x/5=y/4=x-2y/5-8=-5/-3=5/3
do do
x=25/3
y=20/3
a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
a) Đặt \(\frac{x}{-2}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=-2k\\y=-3k\end{cases}}\)
Khi đó 4x - 3y = 9
<=> -8k + 9k = 9
=> k = 9
=> x = -18 ; y = -27
b) Ta có : \(2x=3y\Rightarrow\frac{2x}{6}=\frac{3y}{6}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
=> x = 4 ; y = 6
c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó (3k)2 + (4k)2 = 100
<=> 9k2 + 16k2 = 100
=> 25k2 = 100
=> k2 = 4
=> k = \(\pm\)2
Khi k = 2 => x = 6 ; y = 8
Khi k = -2 => x = -6 ; y = -8
Vậy các cặp (x;y) thỏa mãn cần tìm là (6;8);(-6;-8)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
Khi đó x3 + y3 = 91
<=> (3k)3 + (4k)3 = 91
=> 27k3 + 64k3 = 91
=> 91k3 = 91
=> k3 = 1
=> k = 1
=> x = 3 ; y = 4
e) Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
Khi đó x2y = 100
<=> (5k)2.4k = 100
=> 25k2.4k = 100
=> 100k3 = 100
=> k = 1
=> x = 5 ; y = 4
Đặt: \(\frac{x}{-9}=\frac{y}{-6}=k\Rightarrow x=-9k\)
\(y=-6k\)
Ta có:
\(-4x-5y=594\)
\(\left(-4\right)\cdot\left(-9\right)k-5\cdot\left(-6\right)k=594\)
\(36k-\left(-30\right)k=594\)
\(k\left[36-\left(-30\right)\right]=594\)
\(k\cdot66=594\)
\(k=594:66=9\)
Vì \(x=-9k\Rightarrow x=\left(-9\right)\cdot9=-81\)
\(y=-6k\Rightarrow y=\left(-6\right)\cdot9=-54\)
Vậy x=-81
y=-54
\(\frac{x}{-9}=\frac{y}{-6}=\frac{-4x-5y}{-36-\left(-30\right)}=\frac{594}{6}=99\) (áp dụng tính chất TLT)
=> x = 99.(-9) = -891
=> y = 99.(-6) = -594