Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-6x+5=0\\ \Rightarrow\left(x^2-5x\right)-\left(x-5\right)=0\\ \Rightarrow x\left(x-5\right)-\left(x-5\right)=0\\ \Rightarrow\left(x-1\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
\(b,2x^2+4x-8=0\\ \Rightarrow x^2+2x-4=0\\ \Rightarrow\left(x^2+2x+1\right)-5=0\\ \Rightarrow\left(x+1\right)^2-\sqrt{5^2}=0\\ \Rightarrow\left(x+1+\sqrt{5}\right)\left(x+1-\sqrt{5}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1-\sqrt{5}\\x=-1+\sqrt{5}\end{matrix}\right.\)
\(c,4y^2-4y+1=0\\ \Rightarrow\left(2y-1\right)^2=0\\ \Rightarrow2y-1=0\\ \Rightarrow y=\dfrac{1}{2}\)
\(d,5x^2-x+2=0\)
Ta có:\(\Delta=\left(-1\right)^2-4.5.2=1-40=-39\)
Vì \(\Delta< 0\Rightarrow\) pt vô nghiệm
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$4y^2+1\geq 4y$
$\Rightarrow x^2+4y^2+5\geq 4(x+y)$
$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
đề ẩu thế.... Có lẽ là căn 21
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\)
\(\le\left(1+1+1\right)\left(4\left(x+y+z\right)+3\right)\)
\(=3\cdot\left(4\cdot1+3\right)=21\)
\(\Rightarrow VT^2\le21\Rightarrow VT\le\sqrt{21}\)
Khi \(x=y=z=\frac{1}{3}>-\frac{1}{4}\)
1:
\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)
=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3
=>x+1=13/11 và y-1=-13/18
=>x=2/11 và y=5/18
Ta có
x − y = 3 3 x − 4 y = 2 ⇔ x = y + 3 3 y + 3 − 4 y = 2 ⇔ x = y + 3 y = 7 ⇔ x = 10 y = 7
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (10; 7)
Do đó: x 2 y = 10 2 . 7 = 700
Đáp án: D
Đề phải là CMR: \(x^2+4y^2\ge0,2\) nha bạn.
Giải:
Áp dụng BĐT Bunhiacopxki: \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
(Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{a}=\frac{y}{b}\))
Áp dụng vào bài toán ta có:
\(\left(x+4y\right)^2=\left(1.x+2.2y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right)=5\left(x^2+4y^2\right)\)
Mà \(x+4y=1\) nên \(x^2+4y^2\ge\frac{1}{5}=0,2\) (Đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=\frac{2y}{2}=y\\x+4y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{5}\)
Áp dụng Bunhia...
\(\left(1.x+2.2y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right).\)
\(1\le5.\left(x^2+4y^2\right).\Leftrightarrow x^2+4y^2\ge\frac{1}{5}=0,2\)