Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài là thế này đúng không bạn:
Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)
Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)
P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)
\(f\left(x\right)=x+\frac{3}{x}=\left(\frac{3x}{4}+\frac{3}{x}\right)+\frac{x}{4}\)
\(\ge2\sqrt{\frac{3x}{4}.\frac{3}{x}}+\frac{2}{4}=3+\frac{1}{2}=\frac{7}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=2\\\frac{3x}{4}=\frac{3}{x}\end{cases}\Leftrightarrow}x=2\)
Vậy min f(x) = 7/2 đạt tại x =2
Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).
Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)
\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)
\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)
\(\Leftrightarrow0\le x+y\le4\).
Do đó m = 0, n = 4.
Vậy m2 + n2 = 16. Chọn A.
\(f\left(x\right)=3x^2+\frac{8}{x}=3x^2+\frac{4}{x}+\frac{4}{x}\ge3\sqrt[3]{3x^2.\frac{4}{x}.\frac{4}{x}}=6\sqrt[3]{6}\)
Dấu \(=\)khi \(3x^2=\frac{4}{x}\Leftrightarrow x=\sqrt[3]{\frac{4}{3}}\).