Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Bài toán cần 5 điểm cực trị => Tổng số nghiệm của (1) và (2) phải là 5
Đối với (1) => số nghiệm chính là số điểm cực trị. Nhìn vào đồ thị => có 3 cực trị
=> Phương trinh (2) phải có 2 nghiệm khác 3 nghiệm trên. Nhìn vào đồ thị ta thấy
Đáp án B
Từ giả thiết
2017 1 − y 2017 x = x 2 + 2018 1 − y 2 + 2018 ⇔ 2017 1 − y 1 − y 2 + 2018 = 2017 x x 2 + 2018 *
Xét hàm số f t = 2017 t t 2 + 2018 với t ∈ 0 ; 1
⇒ f ' t = 2017 t ln 2017 t 2 + 2018 + 2 t .2017 t > 0
⇒ f t đồng biến trên 0 ; 1 . Do đó (*) ⇔ 1 − y = x ⇔ x + y = 1.
Ta có: 0 ≤ x y ≤ x + y 2 4 = 1 4 . Đặt m = x y ∈ 0 ; 1 4 . Khi đó :
S = 16 x 2 y 2 + 34 x y + 12 y + x y + x 2 − 3 x y = 16 m 2 − 2 m + 12 = g m
Xét hàm g m trên đoạn
0 ; 1 4 ⇒ g ' m = 32 m − 2 → g ' m = 0 ⇔ m = 1 16
Lúc này
g 0 = 12 , g 1 4 = 25 2 , g 1 16 = 191 16 ⇒ M = 25 2 m = 191 16 ⇒ M + m = 391 16 .
Đáp án C
Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất
Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt
⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17
Đáp án A
Em có:
4 = z + 2 + i = z − 1 − 2 i + 3 + 3 i ≥ z − 1 − 2 i − 3 + 3 i