Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(a,\Leftrightarrow f\left(x\right)⋮g\left(x\right)=\left(x+2\right)^2\\ \Leftrightarrow f\left(-2\right)=-8+4a-4=0\\ \Leftrightarrow a=3\\ b,\Leftrightarrow f\left(x\right)⋮g\left(x\right)=\left(x-1\right)\left(x+1\right)\\ \Leftrightarrow f\left(1\right)=f\left(-1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}1+a+b-1=0\\1-a-b-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=0\\a+b=0\end{matrix}\right.\Leftrightarrow a,b\in R\\ \text{Vậy }f\left(x\right)⋮g\left(x\right),\forall a,b\\ c,\Leftrightarrow f\left(1\right)=f\left(-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2-3a+2+b=0\\-18-12a-4+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-b=4\\12a-b=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{26}{9}\\b=-\dfrac{38}{3}\end{matrix}\right.\)
A=\(2^0+2+...+2^8-\left(0+1+...+8\right)-9.4\)
=\(2^9-1-36-36=439\)
Answer:
\(f\left(1\right)=2\Rightarrow1+a+b+c+d+e=2\)
\(f\left(2\right)=5\Rightarrow32+16a+8b+4c+2d+e=5\)
\(f\left(3\right)=10\Rightarrow243+81a+27b+9c+3d+e=10\)
\(f\left(4\right)=17\Rightarrow1024+256a+64b+16c+4d+e=17\)
\(f\left(5\right)=26\Rightarrow3125+625a+125b+25c+5d+e=26\)
Rút gọn các ẩn đi thì được:
\(a=-15\)
\(b=85\)
\(c=-224\)
\(d=274\)
\(e=-119\)
\(\Rightarrow f\left(x\right)=x^5-15x^4+85x^3-224x^2+274x-119\)