Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x - 1)x+2 = (x - 1)x+4
=> (x - 1)x. (x - 1)2 = (x - 1)x . (x - 1)4
=> (x - 1)x . [(x - 1)2 - (x - 1)4 ] = 0
=> (x - 1)x = 0 => x - 1 = 0 => x = 1
hoặc (x - 1)2 - (x - 1)4 = 0
=> (x - 1)2 [1 - (x - 1)2 ] = 0
=> x - 1 = 0 => x = 1
hoặc 1 - (x - 1)2 = 0 => -x2 + 2x = 0 => x = 0 hoặc x = 2
Vậy x = 0 , x = 1, x = 2
Có 2 giá trị thỏa mãn điều kiện trên
\(\hept{\begin{cases}x=1\\x=2\end{cases}}\)
Sủa lại đề nha : \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\)
Vì \(\left(3x+4\right)^2\ge0\) ; \(\left|y-5\right|\ge0\)
\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|\ge0\)
\(\Rightarrow\left|\left(3x+4\right)^2+\left|y-5\right|\right|=\left(3x+4\right)^2+\left|y-5\right|\)
\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|=1=0+1=1+0\)
Nếu \(\left(3x+4\right)^2=0\) thì \(\left|y-5\right|=1\) => \(x=-\frac{4}{3}\) thì \(y=4;6\)
Nếu \(\left(3x+4\right)^2=1\) thì \(\left|y+5\right|=0\) =? \(x=-\frac{5}{3};-1\) thì y = \(-5\)
=> cặp ( x;y ) thỏa mãn đề bài là ( -4/3; 4 ); (-4/3;6) ; (-5/3;-5) ; (-1;5)
Mà x ; y nguyên => ( x;y ) = ( -1;5 )
Vậy có 1 cặp (x;y) thỏa mãn
bn xét từng cái vế trái lớn hơn hoặc bằng 0 rồi cộng lại thì lớn hơn hoặc bằng 0.
sau đó suy ra vế phải lớn hơn hoặc bằng 0.
sau 1 hồi thì đc x lớn hơn hoặc bằng 0
rồi bỏ đc dấu giá trị tuyệt đối
về sau là dễ r nha!
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)
\(\left(x-1\right)^2=1\)
\(\Rightarrow\left(x-1\right)^2=\left(\pm1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy có 2 giá trị của x thoả mãn đề bài.